Question p.6.3: Form the matrices required to solve completely the plane tru...

Form the matrices required to solve completely the plane truss shown in Fig. P.6.3 and determine the force in member 24. All members have equal axial rigidity.

Screenshot 2022-10-15 172952
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Referring to Fig. P.6.3 and Fig. 6.3

\begin{array}{lccccc}\text { Member } & 12 & 23 & 34 & 45 & 24 \\\text { Length } & l & l & l & l & l \\\lambda(\cos \theta) & -1 / 2 & 1 / 2 & -1 / 2 & 1 / 2 & 1 \\\mu(\sin \theta) & \sqrt{3} / 2 & \sqrt{3} / 2 & \sqrt{3} / 2& \sqrt{3} / 2 & 0\end{array}

From Eq. (6.30) the member stiffness matrices are

\left[K_{i j}\right]=\frac{A E}{L}\left[\begin{array}{cccc}\lambda^2 & \lambda \mu & -\lambda^2 & -\lambda \mu \\\lambda \mu & \mu^2 & -\lambda \mu & -\mu^2 \\-\lambda^2 & -\lambda \mu & \lambda^2 & \lambda \mu \\-\lambda \mu & -\mu^2 & \lambda \mu & \mu^2\end{array}\right]  (6.30)

\begin{aligned}&{\left[K_{12}\right]=\frac{A E}{l}\left[\begin{array}{cccc}1 / 4 & -\sqrt{3} / 4 & -1 / 4 & \sqrt{3} / 4 \\-\sqrt{3} / 4 & 3 / 4 & \sqrt{3} / 4 & -3 / 4 \\-1 / 4 & \sqrt{3} / 4 & 1 / 4 & -\sqrt{3} / 4 \\\sqrt{3} / 4 & -3 / 4 & -\sqrt{3} / 4 & 3 / 4\end{array}\right]} \\&{\left[K_{23}\right]=\frac{A E}{l}\left[\begin{array}{cccc}1 / 4 & \sqrt{3} / 4 & -1 / 4 & -\sqrt{3} / 4 \\\sqrt{3} / 4 & 3 / 4 & -\sqrt{3} / 4 & -3 / 4 \\-1 / 4 & -\sqrt{3} / 4 & 1 / 4 & \sqrt{3} / 4 \\-\sqrt{3} / 4 & -3 / 4 & \sqrt{3} / 4 & 3 / 4\end{array}\right]} \\&{\left[K_{34}\right]=\frac{A E}{l}\left[\begin{array}{cccc}1 / 4 & -\sqrt{3} / 4 & -1 / 4 & \sqrt{3} / 4 \\-\sqrt{3} / 4 & 3 / 4 & \sqrt{3} / 4 & -3 / 4 \\-1 / 4 & \sqrt{3} / 4 & 1 / 4 & -\sqrt{3} / 4 \\\sqrt{3} / 4 & -3 / 4 & -\sqrt{3} / 4 & 3 / 4\end{array}\right]} \\&\left\lfloor K_{45}\right\rfloor=\frac{A E}{l}\left[\begin{array}{cccc}1 / 4 & \sqrt{3} / 4 & -1 / 4 & -\sqrt{3} / 4 \\\sqrt{3} / 4 & 3 / 4 & -\sqrt{3} / 4 & -3 / 4 \\-1 / 4 & -\sqrt{3} / 4 & 1 / 4 & \sqrt{3} / 4 \\-\sqrt{3} / 4 & -3 / 4 & \sqrt{3} / 4 & 3 / 4\end{array}\right]\end{aligned}

 

\left[K_{24}\right]=\frac{A E}{l}\left[\begin{array}{rrrr}1 & 0 & -1 & 0 \\0 & 0 & 0 & 0 \\-1 & 0 & 1 & 0 \\0 & 0 & 0 & 0\end{array}\right]

The stiffness matrix for the complete truss is now assembled using the method described in Example 6.1. Equation (6.29) then becomes

\{F\}=\left[K_{i j}\right]\{\delta\}  (6.29)

\left\{\begin{array}{l}F_{x, 1} \\F_{y, 1} \\F_{x, 2} \\F_{y, 2} \\F_{x, 3} \\F_{y, 3} \\F_{x, 4} \\F_{y, 4} \\F_{x, 5} \\F_{y, 5}\end{array}\right\}=\frac{A E}{4 l}\left[\begin{array}{cccccccccc}1 &-\sqrt{3} & -1 & \sqrt{3} & 0 & 0 & 0 & 0 & 0 & 0 \\-\sqrt{3} & 3 & \sqrt{3} & -3 & 0 & 0 & 0 & 0 & 0 & 0 \\-1 & \sqrt{3} & 6 & 0 & -1 &\sqrt{3} & -4 & 0 & 0 & 0 \\\sqrt{3} & -3 & 0 & 6 & -\sqrt{3} & -3 & 0 & 0 & 0 & 0 \\0 & 0 & -1 & -\sqrt{3} & 2 & 0 & -1 & \sqrt{3} & 0 & 0 \\0 & 0 & -\sqrt{3} &- 3 & 0 & 6 & \sqrt{3} &- 3 & 0 & 0 \\0 & 0 & -4 & 0 & -1 & \sqrt{3} & 6 & 0 & -1 & -\sqrt{3} \\0 & 0 & 0 & 0 & \sqrt{3} & -3 & 0 & 6 & -\sqrt{3} & -3 \\0 & 0 & 0 & 0 & 0 & 0 & -1 & -\sqrt{3} & 1 & \sqrt{3} \\0 & 0 & 0 & 0 & 0 & 0 & -\sqrt{3} & -3 & \sqrt{3} & 3\end{array}\right]\left\{\begin{array}{c}u_1=0 \\v_1=0 \\u_2 \\v_2 \\u_3=0 \\v_3=0 \\u_4 \\v_4 \\u_5=0 \\v_5=0\end{array}\right\}  (i)

In Eq. (i) F_{x, 2}=F_{y, 2}=0, F_{x, 4}=0, F_{y, 4}=-P .. Thus from Eq. (i)

\begin{aligned}F_{x, 2} &=0=\frac{A E}{4 l}\left(6 u_2-4 u_4\right)  (ii) \\F_{y, 2} &=0=\frac{A E}{4 l}\left(6 v_2\right)  (iii)\\F_{x, 4} &=0=\frac{A E}{4 l}\left(-4 u_2+6 u_4\right)  (iv)\\F_{y, 4} &=-P=\frac{A E}{4 l}\left(6 v_4\right) (v)\end{aligned}

From Eq. (v)

v_4=-\frac{2 P l}{3 A E}

From Eq. (iii)
v_2=0
and from Eqs (ii) and (iv)
u_2=u_4=0

Hence, from Eq. (6.32)

S_{i j}=\frac{A E}{I}\left[\begin{array}{ll}\lambda & \mu \\& i j\end{array}\right]\left\{\begin{array}{l}u_j-u_i \\v_j-v_i\end{array}\right\}  (6.32)

S_{24}=\frac{A E}{l}\left[\begin{array}{ll}1 & 0\end{array}\right]\left\{\begin{array}{c}0-0 \\\frac{-2 P l}{3 A E}-0\end{array}\right\}

which gives
S_{24} = 0

Screenshot 2022-10-15 163716

Related Answered Questions