Question p.6.6: Given that the force–displacement (stiffness) relationship f...

Given that the force–displacement (stiffness) relationship for the beam element shown in Fig. P.6.6(a) may be expressed in the following form:

\left\{\begin{array}{c}F_{y, 1} \\M_1 / L \\F_{y, 2} \\M_2 / L\end{array}\right\}=\frac{E I}{L^3}\left[\begin{array}{rrrr}12 & -6 & -12 & -6 \\-6 & 4 & 6 & 2 \\-12 & 6 & 12 & 6 \\-6 & 2 & 6 & 4\end{array}\right]\left\{\begin{array}{c}v_1 \\\theta_1 L \\v_2 \\\theta_2 L\end{array}\right\}

Obtain the force–displacement (stiffness) relationship for the variable section beam (Fig. P.6.6(b)), composed of elements 12, 23 and 34.
Such a beam is loaded and supported symmetrically as shown in Fig. P.6.6(c). Both ends are rigidly fixed and the ties FB, CH have a cross-section area a_1 and the ties EB, CG a cross-section area a_2. Calculate the deflections under the loads, the forces in the ties and all other information necessary for sketching the bending moment and shear force diagrams for the beam. Neglect axial effects in the beam. The ties are made from the same material as the beam.

Screenshot 2022-10-15 183541
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The stiffness matrix for each element of the beam is obtained using the given force–displacement relationship, the complete stiffness matrix for the beam is then obtained using the method described in Example 6.1. This gives

\left\{\begin{array}{c}F_{y, 1} \\M_1 / L \\F_{y, 2} \\M_2 / L \\F_{y, 3} \\M_3 / L \\F_{y, 4} \\M_4 / L\end{array}\right\}=\frac{E I}{L^3}\left[\begin{array}{rrrrrrrr}24 & -12 & -24 & -12 & & & & \\-12 & 8 & 12 & 4 & & & & \\-24 & 12 & 36 & 6 & -12 & -6 & & \\-12 & 4 & 6 & 12 & 6 & 2 & & \\& & -12 & 6 & 36 & -24 & -24 & -12 \\& & -6 & 2 & -6 & 12 & 12 & 4 \\& & & & -24 & 12 & 24 & 12 \\& & & & -12 & 4 & 12 & 8\end{array}\right]\left\{\begin{array}{c}v_1 \\\theta_1 L \\v_2 \\\theta_2 L \\v_3 \\\theta_3 L \\v_4 \\\theta_4 L\end{array}\right\}  (i)

The ties FB, CH, EB and CG produce vertically upward forces F_2 and F_3 at B and C, respectively. These may be found using the method described in S.6.5. Thus

F_2=-\left(\frac{a_1 E \cos ^2 60^{\circ}}{2 L / \sqrt{3}}+\frac{a_2 E \cos ^2 45^{\circ}}{\sqrt{2} L}\right) v_2

But a_1=384 I / 5 \sqrt{3} L^2 \text { and } a_2=192 I / 5 \sqrt{2} L^2 so that

F_2=-\frac{96 E I}{5 L^3} v_2

Similarly

F_3=-\frac{96 E I}{5 L^3} v_3

Then

F_{y, 2}=-P-\frac{96 E I}{5 L^3} v_2 \quad \text { and } \quad F_{y, 3}=-P-\frac{96 E I}{5 L^3} v_3

In Eq. (i), v_1=\theta_1=v_4=\theta_4=0 \text { and } M_2=M_3=0 \text {. } Also, from symmetry, v_2=v_3, and \theta_2=-\theta_3. Then, from Eq. (i)

M_2=0=6 v_2+12 \theta_2 L+6 v_3+2 \theta_3 L

i.e.

12 v_2+10 \theta_2 L=0

which gives

\theta_2=-\frac{6}{5 L} v_2

Also from Eq. (i)

F_{y, 2}=-P-\frac{96 E I}{5 L^3} v_2=\frac{E I}{L^3}\left(36 v_2+6 \theta_2 L-12 v_3-6 \theta_3 L\right)

i.e.

-P-\frac{96 E I}{5 L^3} v_2=\frac{48 E I}{5 L^3} v_2

whence

v_2=-\frac{5 P L^3}{144 E I}=v_3

and

\theta_2=\frac{P L^2}{24 E I}=-\theta_3

The reactions at the ends of the beam now follow from the above values and Eq. (i).
Thus

\begin{aligned}F_{y, 1} &=\frac{E I}{L^3}\left(-24 v_2-12 \theta_2 L\right)=\frac{P}{3}=F_{y, 4} \\M_1 &=\frac{E I}{L^2}\left(12 v_2+4 \theta_2 L\right)=-\frac{P L}{4}=-M_4\end{aligned}

Also

F_2=F_3=\frac{96 E I}{5 L^3} \frac{5 P L^3}{144 E I}=\frac{2 P}{3}

The forces on the beam are then as shown in Fig. S.6.6(a). The shear force and bending moment diagrams for the beam follow and are shown in Figs S.6.6(b) and (c),respectively.

The forces in the ties are obtained using Eq. (6.32). Thus

S_{i j}=\frac{A E}{L}\left[\begin{array}{ll}\lambda & \mu \\& i j\end{array}\right]\left\{\begin{array}{l}u_j-u_i \\v_j-v_i\end{array}\right\}  (6.32)

S_{\mathrm{BF}}=S_{\mathrm{CH}}=\frac{a_1 E}{2 L / \sqrt{3}}\left[-\frac{1}{2} \frac{\sqrt{3}}{2}\right]\left\{\begin{array}{c}0-0 \\v_2-0\end{array}\right\}

i.e.

S_{\mathrm{BF}}=S_{\mathrm{CH}}=\frac{384 E I \sqrt{3}}{5 \sqrt{3} \times 2 L^3} \frac{1}{2} \frac{5 P L^3}{144 E I}=\frac{2}{3} P

and

S_{\mathrm{BE}}=S_{\mathrm{CG}}=\frac{a_2 E}{\sqrt{2} L}\left[-\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right]\left\{\begin{array}{c}0-0 \\v_2-0\end{array}\right\}

i.e.

S_{\mathrm{BE}}=S_{\mathrm{CG}}=\frac{192 E I}{5 \sqrt{2} \times \sqrt{2} L^3} \frac{1}{\sqrt{2}} \frac{5 P L^3}{144 E I}=\frac{\sqrt{2} P}{3}
Screenshot 2022-10-15 184517

Related Answered Questions