Question 14.8: HARMONICS OF A STRETCHED WIRE GOAL Calculate string harmonic...

HARMONICS OF A STRETCHED WIRE

GOAL Calculate string harmonics, relate them to sound, and combine them with tensile stress.

PROBLEM (a) Find the frequencies of the fundamental, second, and third harmonics of a steel wire 1.00 m1.00 \mathrm{~m} long with a mass per unit length of 2.00×103 kg/m2.00 \times 10^{-3} \mathrm{~kg} / \mathrm{m} and under a ten sion of 80.0 N80.0 \mathrm{~N}. (b) Find the wavelengths of the sound waves created by the vibrating wire for all three modes. Assume the speed of sound in air is 345 m/s345 \mathrm{~m} / \mathrm{s}. (c) Suppose the wire is carbon steel with a density of 7.80×103 kg/m37.80 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}, a cross-sectional area A=2.56×107 m2A=2.56 \times 10^{-7} \mathrm{~m}^{2}, and an elastic limit of 2.80×108 Pa2.80 \times 10^{8} \mathrm{~Pa}. Find the fundamental frequency if the wire is tight ened to the elastic limit. Neglect any stretching of the wire (which would slightly reduce the mass per unit length).

STRATEGY (a) It’s easiest to find the speed of waves on the wire then substitute into Equation 14.1514.15

f1=vλ1=v2Lf_1 = \frac{v}{\lambda_1} = \frac{v}{2L}      [14.15]

to find the first harmonic. The next two are multiples of the first, given by Equation 14.17.

fn=nf1=n2LFμn=1,2,3,...f_n = nf_1 = \frac{n}{2L} \sqrt{\frac{F}{\mu}} \qquad n = 1,2,3, . . .      [14.17]

(b) The frequencies of the sound waves are the same as the frequencies of the vibrating wire, but the wavelengths are different. Use vs=fλv_{s}=f \lambda, where vsv_{s} is the speed of sound in air, to find the wavelengths in air. (c) Find the force corresponding to the elastic limit and substitute it into Equation 14.16.

f1=12LFμf_1 = \frac{1}{2 L} \sqrt{\frac{F}{\mu}}      [14.16]

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Find the first three harmonics at the given tension.

Use Equation 13.1813.18

v=Fμv=\sqrt{\frac{F}{\mu}}      [13.18]

to calculate the speed of the wave on the wire:

v=Fμ=80.0 N2.00×103 kg/m=2.00×102 m/sv=\sqrt{\frac{F}{\mu}}=\sqrt{\frac{80.0  \mathrm{N}}{2.00 \times 10^{-3} \mathrm{~kg} / \mathrm{m}}}=2.00 \times 10^{2} \mathrm{~m} / \mathrm{s}

Find the wire’s fundamental frequency from Equation 14.15:

f1=v2L=2.00×102 m/s2(1.00 m)=1.00×102 Hz\begin{aligned}&f_{1}=\frac{v}{2 L}=\frac{2.00 \times 10^{2} \mathrm{~m} / \mathrm{s}}{2(1.00 \mathrm{~m})}=1.00 \times 10^{2} \mathrm{~Hz}\end{aligned}

Find the next two harmonics by multiplication:

f2=2f1=2.00×102 Hz,f3=3f1=3.00×102 Hz\begin{aligned}&f_{2}=2 f_{1}=2.00 \times 10^{2} \mathrm{~Hz}, f_{3}=3 f_{1}=3.00 \times 10^{2} \mathrm{~Hz}\end{aligned}

(b) Find the wavelength of the sound waves produced.

Solve vs=fλv_{s}=f \lambda for the wavelength and substitute the frequencies:

λ1=vs/f1=(345 m/s)/(1.00×102 Hz)=3.45 mλ2=vs/f2=(345 m/s)/(2.00×102 Hz)=1.73 mλ3=vs/f3=(345 m/s)/(3.00×102 Hz)=1.15 m\begin{aligned}&\lambda_{1}=v_{s} / f_{1}=(345 \mathrm{~m} / \mathrm{s}) /\left(1.00 \times 10^{2} \mathrm{~Hz}\right)=3.45 \mathrm{~m} \\&\lambda_{2}=v_{s} / f_{2}=(345 \mathrm{~m} / \mathrm{s}) /\left(2.00 \times 10^{2} \mathrm{~Hz}\right)=1.73 \mathrm{~m} \\&\lambda_{3}=v_{s} / f_{3}=(345 \mathrm{~m} / \mathrm{s}) /\left(3.00 \times 10^{2} \mathrm{~Hz}\right)=1.15 \mathrm{~m}\end{aligned}

(c) Find the fundamental frequency corresponding to the elastic limit.

Calculate the tension in the wire from the elastic limit:

FA= elastic limit F=( elastic limit )AF=(2.80×108 Pa)(2.56×107 m2)=71.7 N\begin{aligned}&\frac{F}{A}=\text { elastic limit } \quad \rightarrow \quad F=(\text { elastic limit }) A \\&F=\left(2.80 \times 10^{8} \mathrm{~Pa}\right)\left(2.56 \times 10^{-7} \mathrm{~m}^{2}\right)=71.7 \mathrm{~N}\end{aligned}

Substitute the values of F,μF, \mu, and LL into Equation 14.16:

f1=12LFμf1=12(1.00 m)71.7 N2.00×103 kg/m=94.7 Hz\begin{aligned}&f_{1}=\frac{1}{2 L} \sqrt{\frac{F}{\mu}} \\&f_{1}=\frac{1}{2(1.00 \mathrm{~m})} \sqrt{\frac{71.7 \mathrm{~N}}{2.00 \times 10^{-3} \mathrm{~kg} / \mathrm{m}}}=94.7 \mathrm{~Hz}\end{aligned}

REMARKS From the answer to part (c), it appears we need to choose a thicker wire or use a better grade of steel with a higher elastic limit. The frequency corresponding to the elastic limit is smaller than the fundamental!

Related Answered Questions

Question: 14.AP.5

Verified Answer:

Songs for the bugle are limited to harmonics of th...
Question: 14.AP.1

Verified Answer:

Assume you’re at ground level, and neglect ground ...