Question 2.16: he state of stress at a point in xyz reference is as follows...
he state of stress at a point in xyz reference is as follows.
\tau_{i j}=\begin{vmatrix} {80} & {-60} & {0} \\ {-60} & {-40} & {0} \\ {0} & {0} & {40} \end{vmatrix} MPADetermine the stress tensor in the direction x^{\prime}y^{\prime}z^{\prime} by rotating xyz through 30° anticlockwise about z-direction as shown in Fig. 2.26.

Learn more on how we answer questions.
Direction cosines,
c_{x^{\prime} x}=\cos 30^{\circ}=0.866,c_{x^{\prime} y}=\cos 60^{\circ}=0.5,
c_{x^{\prime} z}=\cos 90^{\circ}=0,
c_{zx^{\prime} } =\cos 90^{\circ}=0,
c_{z z^{\prime}}=\cos 0^{\circ}=1,
c_{y x^{\prime}}=\cos 120^{\circ}=-0.5,
c_{ y^{\prime}y}=\cos 30^{\circ}=0.866,
c_{ y^{\prime}z}=\cos 90^{\circ}=0,
c_{z y^{\prime}}=\cos 90^{\circ}=0
Using Eq. (2.10),
\tau_{n s}=\sum_{i j} \tau_{i j} \times c_{n i} \times c_{s j}where all combinations of n, s = x^{\prime},y^{\prime}, z^{\prime} and i, j = x, y, z are exhausted.
(1) n = x^{\prime}, s=x^{\prime}
\tau _{x^{\prime} x^{\prime}}=c_{x^{\prime} x} c_{x^{\prime} x}\tau_{x x}+c_{x^{\prime} x} c_{x^{\prime} y} \tau_{x y}+c_{x^{\prime} x} c_{x^{\prime} z} \tau_{x z}
+c _{x^{\prime} y} c_{x^{\prime} x} \tau_{y x}+c_{x^{\prime} y} c_{x^{\prime} y} \tau_{y y}+c_{x^{\prime} y} c_{x^{\prime} z} \tau_{y z}
+c_{x^{\prime} z} c_{x x^{\prime} x} \tau_{z x}+c_{x^{\prime} z} c_{x^{\prime} y} \tau_{y z}+c_{x^{\prime} z} c_{x^{\prime} z} \tau_{z z}
=0.866^2 \times 80-0.866 \times 0.5 \times 60+0-
0.5 \times 0.866 \times 60-0.5^2 \times 40+0 =-1.96 MPa
(2) n = x^{\prime}, s=y^{\prime}
\tau_{x^{\prime} y^{\prime}}=c_{x^{\prime} x} c_{y^{\prime} x} \tau_{x x}+c_{x^{\prime} x} c_{y^{\prime} y^{\prime}} \tau_{x y}+c_{x^{\prime} x} c_{y^{\prime} z^{\prime}} \tau_{x z}+c_{x^{\prime} y} c_{y^{\prime} x} \tau_{y x}+c_{x^{\prime} y} c_{y^{\prime} y} \tau_{y y}+c_{x^{\prime} y} c_{y^{\prime} z} \tau_{y z}
+c_{x^{\prime} z} c_{y^{\prime} x} \tau_{z x}+c_{x^{\prime} z} c_{y^{\prime} y} \tau_{y z}+c_{x^{\prime} z} c_{y^{\prime} z} \tau_{z z}
=-0.866 \times 0.5 \times 80-0.866^2 \times 60+0.5 \times 0.5 \times 60-0.5 \times 0.866 \times 40 = -81.96 MPa
(3) n = x^{\prime}, s=z^{\prime}
\tau_{x^{\prime} z^{\prime}}=c_{x^{\prime} x} c_{z^{\prime} x} \tau_{x x}+c_{x x^{\prime}} c_{z^{\prime} y} \tau_{x y}+c_{x^{\prime} x} c_{z^{\prime} z} \tau_{x z}+c_{x^{\prime} y} c_{z^{\prime} x} \tau_{y x}+c_{x y^{\prime}} c_{z y^{\prime}} \tau_{y y}+c_{x^{\prime} y} c_{zz^{\prime}} \tau_{y z}
+c_{x^{\prime} z} +c_{z^{\prime} x} \tau_{z x}+c_{x z^{\prime}} c_{z^{\prime} y} \tau_{y z}+c_{x^{\prime} z} c_{z^{\prime} z^{\prime}} \tau_{z z}=0
(4) n=y^{\prime}, s=y^{\prime}
\tau_{y^{\prime} y^{\prime}}=c_{y^{\prime} x} c_{y^{\prime} x} \tau_{x x}+c_{y^{\prime} x} c_{y^{\prime} y^{\prime}} \tau_{x y}+c_{y^{\prime} x} c_{y^{\prime} z} \tau_{x z}+c_{y y^{\prime}} c_{y^{\prime} x} \tau_{y x}+c_{y^{\prime} y} c_{y^{\prime} y} \tau_{y y}+c_{yy^{\prime}} c_{y^{\prime} z} \tau_{y z}
+c_{y^{\prime} z} c_{y^{\prime} x} \tau_{z x}+c_{y^{\prime} z} c_{y^{\prime} y^{\prime}} \tau_{y z}+c_{y^{\prime} z^{\prime}} c_{y^{\prime} z} \tau_{z z}
=0.5^2 \times 80+0.866 \times 0.5 \times 60+0+0.5 \times 0.866 \times 60-0.866^2 \times 40+0=41.96 MPa
(5) n=y^{\prime}, s=z^{\prime}
\tau_{y^{\prime} z^{\prime}}= c_{y^{\prime} x} c_{z^{\prime} x} \tau_{x x}+c_{y^{\prime} x} c_{z^{\prime} y} \tau_{x y}+c_{y^{\prime} x} c_{z^{\prime} z} \tau_{x z}+c_{y^{\prime} y} c_{z^{\prime} x} \tau_{y x}+c_{y^{\prime} y} c_{z^{\prime} y} \tau_{y y}+c_{y^{\prime} y} c_{z z^{\prime}} \tau_{y z}
+c_{y^{\prime}z^{\prime}} c_{z^{\prime} x} \tau_{z x}+c_{y^{\prime} z^{\prime}} c_{z^{\prime} y} \tau_{y z}+c_{zz^{\prime} } c_{z z^{\prime}} \tau_{z z}=0
(6) n= z^{\prime}, s=z^{\prime}
\tau_{z^{\prime} z^{\prime}}= c_{z^{\prime} x} c_{z^{\prime} x} \tau_{x x}+c_{z^{\prime} x} c_{z^{\prime} y} \tau_{x y}+c_{z^{\prime} x} c_{z z^{\prime}} \tau_{x z}
+c_{z^{\prime} y} c_{z^{\prime} x} \tau_{y x}+c_{z^{\prime} y} c_{z^{\prime} y} \tau_{y y}+c_{z^{\prime} y} c_{z z^{\prime} } \tau_{y z}
+c_{z^{\prime} z} c_{z^{\prime} x} \tau_{z x}+c_{z^{\prime} z} c_{z^{\prime} y} \tau_{y z}+c_{z^{\prime} z} c_{z^{\prime} z} \tau_{z z} . =1 \times 1 \times 40=40 MPa
Since the stress tensor is symmetric, all the terms can now be written as follows.
\tau_{n s}=\begin{vmatrix} {-1.96} & {-81.96} & {0} \\ {- 81.96} & {41.96} & {0} \\ {0} & {0} & {40} \end{vmatrix}Alternately these calculations can be done by matrix multiplication as follws.
Stress tensor, \left[\tau_{i j}\right]=\begin{vmatrix} {80 } & {-60} & {0} \\ {-60} & {-40} & {0} \\ {0} & {0} & {40} \end{vmatrix} MPa
Direction cosine matrix for transformation,
\left[C\right]=\begin{vmatrix} {0.866} & {0.5} & {0} \\ {- 0.5} & {0.866} & {0} \\ {0} & {0} & {1} \end{vmatrix}Using Eq. (2.10d) in matrix notation,
\left[\tau_{n s}\right]=\left[c\right]\times \left[\tau_{i j}\right]\times\left[c\right]^{T}or \left[\tau_{n s}\right]=\begin{vmatrix} {-1.96} & {-81.96} & {0} \\ {-81.96} & {41.96} & {0} \\ {0} & {0} & {40} \end{vmatrix} MPa