Question 5.5: In a steady-state flow process carried out at atmospheric pr...

In a steady-state flow process carried out at atmospheric pressure, 1  mol⋅s^−1 of air at 600 K is continuously mixed with 2 mol⋅s−1 of air at 450 K. The product stream is at 400 K and 1 atm. A schematic representation of the process is shown in Fig. 5.4. Determine  the ideal-gas state for air with C_{P}^{ig} = (7/ 2)R, that the surroundings are at 300 K, and that kinetic- and potential-energy changes of the streams are negligible.

التقاط
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We start by applying an energy balance to determine the rate of heat transfer, which we must know to compute the rate of entropy generation. Writing the energy balance, Eq. (2.29),

\Delta\left[\left(H+\frac{1}{2} u^2+z g\right) \dot{m}\right]_{ fs }=\dot{Q}+\dot{W}_s      (2.29)

with dot{m}  replaced  by  dot{n}  ,   and  then  replacing  \dot{n}  \text { with }  \dot{n}_A+\dot{n}_B

\dot{Q}=\dot{n} H^{i g}  –  \dot{n}_A H_A^{i g}  –  \dot{n}_B H_B^{i g}=\dot{n}_A\left(H^{i g}-H_A^{i g}\right)+\dot{n}_B\left(H^{i g}  –  H_B^{i g}\right)

\dot{Q}=\dot{n}_A C_P^{i g}\left(T  –  T_A\right)+\dot{n}_B C_P^{i g}\left(T  –   T_B\right)=C_P^{i g}\left[\dot{n}_A\left(T  –  T_A\right)+\dot{n}_B\left(T  –   T_B\right)\right]

= (7 / 2)(8.314)[(1)(400  −  600) + (2)(400  −  450)] = − 8729.7 J⋅ s ^{−1}

The steady-state entropy balance, Eq. (5.17), with m∙ again replaced by \dot{n} , can similarly be written as

\Delta(\dot{S} m)_{ fs }-\sum_i \frac{\dot{Q}_j}{T_{\sigma, j}}=\dot{S}_G \geq 0       (5.17)

\dot{S}_G=\dot{n} S^{i g}-\dot{n}_A S_A^{i g}-\dot{n}_B S_B^{i g}-\frac{\dot{Q}}{T_\sigma}=\dot{n}_A\left(S^{i g}-S_A^{i g}\right)+\dot{n}_B\left(s^{i g}-S_B^{i g}\right)-\frac{\dot{Q}}{T_\sigma}

=\dot{n}_A C_P^{i g} \ln \frac{T}{T_A}+\dot{n}_B C_P^{i g} \ln \frac{T}{T_B} \frac{\dot{Q}}{T_\sigma}=C_P^{i g}\left(\dot{n}_A \ln \frac{T}{T_A}+\dot{n}_B \ln \frac{T}{T_B}\right)-\frac{\dot{Q}}{T_\sigma}

=(7 / 2)(8.314)\left[(1) \ln \frac{400}{600}+(2) \ln \frac{400}{450}\right] \frac{8729.7}{300}=10.446 J \cdot K ^{-1} \cdot s ^{-1}

The rate of entropy generation is positive, as it must be for any real process.

Related Answered Questions

Question: 5.8

Verified Answer:

The procedure here is to calculate the maximum pos...