Question 29.3: In an experimental study of the absorption of ammonia by wat...

In an experimental study of the absorption of ammonia by water in a wetted-wall column, the overall mass-transfer coefficient, K_{\mathrm{G}} was found to be 2.74 \times 10^{-9} \mathrm{~kg} \mathrm{~mol} / \mathrm{m}^2 \cdot \mathrm{s} \cdot \mathrm{Pa}. At one point in thecolumn, the gas  phase contained 8 mol ammonia and the liquid-phase concentration was 0.064 kg mol ammonia/m³ of solution. The tower operated at 293 K and 1.013 \times 10^5 \mathrm{~Pa}. At that temperature, the Henry’s law constant is 1.358 \times 10^3 \mathrm{~Pa} /\left(\mathrm{kg} \mathrm{mol} / \mathrm{m}^3\right). If 85 % of the total resistance to mass transfer is encountered in the gas phase, determine the individual film mass-transfer coefficients and the interfacial compositions.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The total resistance in both phases, according to equation (29-12), is

\frac{\text { resistance in the gas phase }}{\text { total resistance in both phases }}=\frac{\Delta p_{A, \text { gas film }}}{\Delta p_{A, \text { total }}}=\frac{1 / k_G}{1 / K_G}     (29-12)

 

\frac{1}{K_G}=\frac{1}{2.74 \times 10^{-9} \frac{\mathrm{kg}  \mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s} \cdot \mathrm{Pa}}}=3.65 \times 10^8 \frac{\mathrm{m}^2 \cdot \mathrm{s} \cdot \mathrm{Pa}}{\mathrm{kg}  \mathrm{mol}}

As the resistance in the gas phase, 1/K_{\mathrm{G}}, is 85 % of the total resistance, we may evaluate the individual gas-phase coefficient by

\frac{1}{k_G}=0.85\left(3.65 \times 10^8 \frac{\mathrm{m}^2 \cdot \mathrm{s} \cdot \mathrm{Pa}}{\mathrm{kg}  \mathrm{mol}}\right)=3.10 \times 10^8 \frac{\mathrm{m}^2 \cdot \mathrm{s} \cdot \mathrm{Pa}}{\mathrm{kg}  \mathrm{mol}}

and

k_G=\frac{1}{3.10 \times 10^8}=3.226 \times 10^{-9} \frac{\mathrm{kg}  \mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s} \cdot \mathrm{Pa}} .

The liquid-phase coefficient, k_{\mathrm{L}} is evaluated using equation (29-16)

\frac{1}{K_G}=\frac{1}{k_G}+\frac{H}{k_L}      (29-16)

 

3.65 \times 10^8=3.10 \times 10^8+\frac{1.358 \times 10^3 \mathrm{~Pa} /\left(\mathrm{kg}  \mathrm{mol} / \mathrm{m}^3\right)}{k_L}

 

k_L=2.47 \times 10^{-5} \mathrm{~kg} \mathrm{~mol} / \mathrm{m}^2 \cdot \mathrm{s} \cdot\left(\mathrm{kg}  \mathrm{mol} / \mathrm{m}^3\right)

At the stated point in the column

p_{A, G}=y_A P=(0.08)\left(1.013 \times 10^5 \mathrm{~Pa}\right)=8.104 \times 10^3 \mathrm{~Pa}

 

c_{A, L}=0.064 \mathrm{~kg} \mathrm{~mol} / \mathrm{m}^3

Upon introducing Henry’s lawconstant, we find the partial pressure, p_A^*, in equilibrium with the bulk liquid concentration

p_A^*=H c_{A, L}=\left(1.358 \times 10^3 \frac{\mathrm{Pa}}{\mathrm{kg}  \mathrm{mol} / \mathrm{m}^3}\right)\left(0.064 \frac{\mathrm{kg}  \mathrm{mol}}{\mathrm{m}^3}\right)=87.1 \mathrm{~Pa}

The mass flux, as expressed by equation (29-10), becomes

N_A=K_G\left(p_{A, G}-p_A^*\right)      (29-10)

 

=\left(2.74 \times 10^{-9} \frac{\mathrm{kg}  \mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s} \cdot \mathrm{Pa}}\right)\left(8.104 \times 10^3 \mathrm{~Pa}-87.1 \mathrm{~Pa}\right)

 

=2.20 \times 10^{-5} \frac{\mathrm{kg}  \mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s}}

The interfacial composition can be determined using equation (29-6)

N_{A, z}=k_G\left(p_{A, G}-p_{A, i}\right)       (29-6)

 

N_A=k_G\left(p_{A, G}-p_{A, i}\right)

 

2.20 \times 10^{-5} \frac{\mathrm{kg}  \mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s}}=\left(3.226 \times 10^{-9} \frac{\mathrm{kg}  \mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s} \cdot \mathrm{Pa}}\right)\left(8.104 \times 10^3 \mathrm{~Pa}-p_{A, i}\right)

 

p_{A, i}=1284 \mathrm{~Pa}

and using Henry’s law

p_{A, i}=H c_{A, i}

 

(1284 \mathrm{~Pa})=\left(1.358 \times 10^3 \frac{\mathrm{Pa}}{\mathrm{kg}  \mathrm{mol} / \mathrm{m}^3}\right) c_{A, i}

 

c_{A, i}=0.946 \mathrm{~kg} \mathrm{~mol} / \mathrm{m}^3

Related Answered Questions