Question 5.21: In an installation 5.2 kg/s of steam at 30 bar and 350°C is ...

In an installation 5.2 kg/s of steam at 30 bar and 350°C is supplied to group of six nozzles in a wheel diameter maintained at 4 bar. Determine :
(i) The dimensions of the nozzles of rectangular cross-sectional flow area with aspect ratio 3 : 1. The expansion may be considered metastable and friction is neglected ;
(ii) Degree of undercooling and supersaturation ;
(iii) Loss in available heat drop due to irreversibility ;
(iv) Increase in entropy ;
(v) Ratio of mass flow rate with metastable expansion to that if expansion is in thermal equilibrium.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Refer Fig. 23.

From Mollier chart :
h_{1}      = 3115 kJ/kg ;                        h_{3}      = 2675 kJ/kg
v_{1}      = 0.09 m³/kg ;                    v_{3}      = 0.46 m³/kg.

(i) Dimensions of the nozzle :
For supersaturated steam, the index of expansion is assumed same as for superheated steam, i.e., n = 1.3.
Thus isentropic enthalpy drop,

( h_{1}     –    h_{2 })   =  \frac{n}{n  –  1}    \frac{p_{1}v_{1}    ×    10^{5}}{10^{3}}  [1   –   (  \frac{p_{2} }{  p_{1}}) ^{ \frac{ n  –  1}{n} }]   kJ/kg

\frac{1.3}{1.3  –   1}    ×    \frac{30    ×    0.9    ×  10^{5}}{10^{3}}  [1   –   (\frac{4}{30} ) ^{\frac{1.3  –   1}{1.3} }  ]

= 1170 (1 – 0.6282) = 435 kJ/kg

∴                     Velocity at point 2,

C_{2}  =   44.72    \sqrt{( h_{1}     –    h_{2 })}  =   44.72    \sqrt{435}   =  932.7  m/s 

Also                                v_{2 }   =   v_{1}   (\frac{p_{1}}{p_{2}})^{\frac{1}{n} }   =   0.09  ×   (\frac{30}{4} ) ^{\frac{ 1}{0.3} }  =  0.4239   m³ / kg

∴                      Mass flow rate,                  \dot{m}    =    \frac{A_{2 }    ×   C_{2 }}{v_{2 }}

5.2  =      \frac{A_{2 }    ×   932.7}{0.4239}

∴                                                    A_{2 }  =    \frac{5.2    ×  0.4239}{932.7}    =  0.002363 m²

Since aspect ratio is 3 : 1, if we assume breadth as x the length will be 3x and area of six nozzles will be

A_{2 }  = 6  ×  3x   ×   x

0.002363 = 18x²

∴                                     x =  (\frac{0.002363}{18} )^{1 / 2}       =  0.0114 m   or   11.4 mm. 

and                        length                          = 3 × 11.4 = 34.2 mm.
(ii) Degree of undercooling and supersaturation :
Temperature at point 2 is found as follows :

  \frac{T_{2} }{ T_{1}}    =    (\frac{p_{2} }{  p_{1}}) ^{ \frac{ n  –  1}{n} }

∴                                        T_{2}  =  T_{1}    ×    (\frac{p_{2} }{  p_{1}}) ^{ \frac{ n  –  1}{n} }   =  (273   +    350)    ×     (\frac{4}{30} ) ^{\frac{ 1.3  –  1}{1.3} }
= 623 × 0.628 = 391.2 K or 118.2°C
From steam tables saturation temperature at 4 bar
= 143.6°C
∴             Degree of undercooling = 143.6 – 118.2 = 25.4°C.

Saturation pressure corresponding to 118.2°C    \simeq    1.9 bar

∴    Degree of super saturation    =    \frac{4}{1.9}    =  2.1.

(iii) Loss in available heat drop :
Isentropic enthalpy drop for expansion under thermal equilibrium conditions as read out from Mollier chart

h_{1}      –     h_{3}  = 3115 – 2675 = 440 kJ/kg
∴                 Loss of available heat drop = 440 – 435 = 5 kJ/kg.

(iv) Increase in entropy =    \frac{5}{(143.6  +  273)}   =  0.012 kJ/kg K. 

(v) Ratio of mass flow rate :
Exit velocity from the nozzle with expansion in thermal equilibrium is given by

C_{3}  =    44.72  \sqrt{(h_{1}      –     h_{3} )}  =    44.72  \sqrt{440}   =  938   m / s

Also specific volume at 4 bar at state point 3 from Mollier chart,
v_{3}   = 0.46 m³/kg
∴                       Mass flow rate for metastable flow

∴                                        \frac{Mass    flow     rate     for    metastable    flow }{Mass    flow    rate    for    thermal    equilibrium       flow}

\frac{Area    of    flow  ×    C_{2}}{ v_{2}}    ×    \frac{v_{3} }{Area    of    flow  ×    C_{3}}

\frac{v_{3} C_{2}}{ v_{2} C_{3} }    =  \frac{0.46   ×    932.7}{0.4239   ×    938}  =  1.07.

521

Related Answered Questions