Question 2.24: In N = {e1^→, e2^→}, let f: R2 → R2 be defined as f(x1, x2) ...

In N=\left\{\overrightarrow{e_{1} }, \overrightarrow{e_{2} }\right\}, let f: R² → R² be defined as

f\left(x_{1},x_{2} \right) =\left(x_{1}+\frac{1}{2}x_{2}, -\frac{1}{2}x_{1}+2x_{2} \right)

=\overrightarrow{x}A,    where \overrightarrow{x}=\left(x_{1},x_{2} \right) and A=\begin{bmatrix} 1 & -\frac{1}{2} \\ \frac{1}{2} & 2 \end{bmatrix}.

Investigate mapping properties of A.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

f is isomorphic. Its characteristic polynomial is

det\left(A-tI_{2} \right)=\left|\begin{matrix} 1-t & -\frac{1}{2} \\ \frac{1}{2} & 2-t \end{matrix} \right| =\left(t-\frac{3}{2} \right) ^{2} .

Therefore, f or A has eigenvalues  \frac{3}{2},\frac{3}{2} and A is not diagonalizable. Solve \overrightarrow{x}\left(A-\frac{3}{2}I_{2} \right)=0 and we get the corresponding eigenvectors t\left(1,1 \right) for t≠ 0. Hence, it is expected that x_{1}-x_{2}=0 is an invariant line (subspace) of A.

Of course, A satisfies its characteristic polynomial, i.e.

 A^{2}-3A+\frac{9}{4}I_{2} =\left(A-\frac{3}{2}I_{2}\right) ^{2}=O.

Thus

G=\left\{\overrightarrow{x }\in R^{2}\mid \overrightarrow{x } \left(A-\frac{3}{2}I_{2}\right) ^{2}=\overrightarrow{0 }\right\} =R^{2}.

Take a vector, say \overrightarrow{e_{1} }=\left(1,0\right), so that

\overrightarrow{e_{1} }\left(A-\frac{3}{2}I_{2}\right)= \left(-\frac{1}{2},-\frac{1}{2}\right)=-\frac{1}{2}\left(\overrightarrow{e_{1} }+\overrightarrow{e_{2} }\right)\neq \overrightarrow{0},

\overrightarrow{e_{1} }\left(A-\frac{3}{2}I_{2}\right) ^{2}=\overrightarrow{0 }.

Then   B= \left\{\overrightarrow{v_{1} },\overrightarrow{v_{2} }\right\},  where \overrightarrow{v_{1} }=-\frac{1}{2}\left(\overrightarrow{e_{1} }+\overrightarrow{e_{2} }\right) and \overrightarrow{v_{2} }=\overrightarrow{e_{1} }, is a basis for R². Related to B,

\overrightarrow{v_{1} }A=\frac{3}{2}\overrightarrow{v_{1} }=\frac{3}{2}\overrightarrow{v_{1} }+0\cdot \overrightarrow{v_{2} },

\overrightarrow{v_{2} }A=\frac{3}{2}\overrightarrow{e_{1} }-\frac{1}{2}\left(\overrightarrow{e_{1} }+\overrightarrow{e_{2} }\right)=\overrightarrow{v_{1} } +\frac{3}{2}\overrightarrow{v_{2} }

\Rightarrow \left[F\right] _{B}=PAP^{-1}= \begin{bmatrix} \frac{3}{2} & 0 \\ 1 & \frac{3}{2} \end{bmatrix} = \frac{3}{2}I_{2}+\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} ,

where

P=\left[\begin{matrix} \overrightarrow{v_{1} } \\ \overrightarrow{v_{2} } \end{matrix} \right] =\begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \\ 1 & 0 \end{bmatrix}.

For any \overrightarrow{x }\in R^{2},

\overrightarrow{x}=\left(x_{1},x_{2} \right)   in   N=\left\{\overrightarrow{e_{1} }, \overrightarrow{e_{2} }\right\} \\\ \downarrow \\\ \left[\overrightarrow{x} \right] _{B}=\left(\alpha _{1},\alpha _{2} \right)   in   B= \left\{\overrightarrow{v_{1} }, \overrightarrow{v_{2} }\right\} \\\ \downarrow \\\ \left[f\left(\overrightarrow{x}\right) \right] _{B}= \left[\overrightarrow{x} \right] _{B}\left[f \right] _{B}= \frac{3}{2}\left(\alpha _{1},\alpha _{2} \right)+\left(\alpha _{2}, 0\right) \\\ \quad \quad \quad\quad \quad\quad \quad \quad \quad \quad = \left(\frac{3}{2}\alpha _{1}+\alpha _{2} ,\frac{3}{2}\alpha _{2} \right)   in   B \\\ \downarrow \\\ f\left(\overrightarrow{x} \right)= \overrightarrow{x}A=\overrightarrow{x}P^{-1} \left[f \right] _{B} P= \left(x_{1}+\frac{1}{2}x_{2},-\frac{1}{2}x_{1}+2x_{2} \right)\in R^{2}   in   N

This means that \ll \overrightarrow{v_{1} } \gg, i.e. x_{1}-x_{2}=0, is the only invariant line (subspace) of f, on which each point \overrightarrow{x} is moved to f \left( \overrightarrow{x}\right) =\frac{3}{2}\overrightarrow{x}. See Fig. 2.86.

16

Related Answered Questions

Question: 2.25

Verified Answer:

Although A is orthogonal, i.e. A^{*}=A^{-1}...
Question: 2.11

Verified Answer:

For \overrightarrow{x}=\left(x_{1},x_{2} \...