Question 21.4: In the Y-Y system of Figure 21–21, determine the following: ...

In the Y-Y system of Figure 21–21, determine the following:

(a) Each load current         (b) Each line current          (c) Each phase current

(d) Neutral current             (e) Each load voltage

21.4
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

This system has a balanced load Z _{a}= Z _{b}= Z _{c}=22.4 \angle 26.6^{\circ}  \Omega.

(a) The load currents are

I _{Z a}=\frac{ V _{\theta a}}{ Z _{a}}=\frac{120 \angle 0^{\circ}  V }{22.4 \angle 26.6^{\circ}  \Omega}=5.36 \angle-26.6^{\circ} A

I _{Z b}=\frac{ V _{\theta b}}{ Z _{b}}=\frac{120 \angle 120^{\circ}  V }{22.4 \angle 26.6^{\circ}  \Omega}= 5 . 3 6 \angle 9 3 . 4 ^ { \circ } A

I _{Z c}=\frac{ V _{\theta c}}{ Z _{c}}=\frac{120 \angle-120^{\circ}  V }{22.4 \angle 26.6^{\circ}  \Omega}=5.36 \angle-147^{\circ} A

(b) The line currents are

I _{L 1}=5.36 \angle-26.6^{\circ} A

I _{L 2}= 5 .36 \angle 9 3 . 4 { }^{\circ} A

I _{L 3}= 5 . 3 6 \angle-147^{\circ} A

(c) The phase currents are

I _{\theta a}=5.36 \angle-26.6^{\circ} A

I _{\theta b}= 5 . 3 6 \angle 9 3 . 4 ^ { \circ } A

I _{\theta c}=5.36 \angle-147^{\circ} A

(d) I _{\text {neut }}= I _{Z a}+ I _{Z b}+ I _{Z c}

= 5.36 \angle-26.6^{\circ} A +5.36 \angle 93.4^{\circ} A +5.36 \angle-147^{\circ}  A

= (4.80 A -j 2.40 A )+(-0.33 A +j 5.35 A )+(-4.47 A -j 2.95 A )= 0  A

If the load impedances were not equal (unbalanced load), the neutral current would have a nonzero value.

(e) The load voltages are equal to the corresponding source phase voltages.

V_{Z a}=120 \angle 0^{\circ} V

V_{Z b}=120 \angle 120^{\circ} V

V_{Z c}=120 \angle-120^{\circ} V

Related Answered Questions

Question: 21.7

Verified Answer:

V_{Z a}=V_{Z b}=V_{Z c}=240  V The ...
Question: 21.6

Verified Answer:

The load currents equal the specified line current...