Question 21.4: In the Y-Y system of Figure 21–21, determine the following: ...
In the Y-Y system of Figure 21–21, determine the following:
(a) Each load current (b) Each line current (c) Each phase current
(d) Neutral current (e) Each load voltage

Learn more on how we answer questions.
This system has a balanced load Z _{a}= Z _{b}= Z _{c}=22.4 \angle 26.6^{\circ} \Omega.
(a) The load currents are
I _{Z a}=\frac{ V _{\theta a}}{ Z _{a}}=\frac{120 \angle 0^{\circ} V }{22.4 \angle 26.6^{\circ} \Omega}=5.36 \angle-26.6^{\circ} A
I _{Z b}=\frac{ V _{\theta b}}{ Z _{b}}=\frac{120 \angle 120^{\circ} V }{22.4 \angle 26.6^{\circ} \Omega}= 5 . 3 6 \angle 9 3 . 4 ^ { \circ } A
I _{Z c}=\frac{ V _{\theta c}}{ Z _{c}}=\frac{120 \angle-120^{\circ} V }{22.4 \angle 26.6^{\circ} \Omega}=5.36 \angle-147^{\circ} A
(b) The line currents are
I _{L 1}=5.36 \angle-26.6^{\circ} A
I _{L 2}= 5 .36 \angle 9 3 . 4 { }^{\circ} A
I _{L 3}= 5 . 3 6 \angle-147^{\circ} A
(c) The phase currents are
I _{\theta a}=5.36 \angle-26.6^{\circ} A
I _{\theta b}= 5 . 3 6 \angle 9 3 . 4 ^ { \circ } A
I _{\theta c}=5.36 \angle-147^{\circ} A
(d) I _{\text {neut }}= I _{Z a}+ I _{Z b}+ I _{Z c}
= 5.36 \angle-26.6^{\circ} A +5.36 \angle 93.4^{\circ} A +5.36 \angle-147^{\circ} A
= (4.80 A -j 2.40 A )+(-0.33 A +j 5.35 A )+(-4.47 A -j 2.95 A )= 0 A
If the load impedances were not equal (unbalanced load), the neutral current would have a nonzero value.
(e) The load voltages are equal to the corresponding source phase voltages.
V_{Z a}=120 \angle 0^{\circ} V
V_{Z b}=120 \angle 120^{\circ} V
V_{Z c}=120 \angle-120^{\circ} V