Question 10.4: It is required to find the midband gain and the upper 3-dB f...

It is required to find the midband gain and the upper 3-dB frequency of the common-emitter amplifier of Fig. 10.9(a) for the following case: IE = 1 mA, RB = RB1 || RB2 = 100 kΩ, RC = 8 kΩ, Rsig = 5 kΩ, RL = 5 kΩ, β0 = 100, VA = 100 V, Cμ = 1 pF, fT = 800 MHz, and rx = 50 Ω. Also, determine the frequency of the transmission zero.

Figure 10.9
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The transistor is biased at IC \simeq 1 mA. Thus the values of its hybrid-π model parameters are

g_{m} = \frac{I_{C}}{V_{T}} = \frac{1  mA}{25  mV} = 40  mA/V

r_{π} = \frac{β_{0}}{g_{m}} = \frac{100}{40  mA/V} = 2.5  kΩ

r_{o} = \frac{V_{A}}{I_{C}} = \frac{100  V}{1  mA} = 100  kΩ

C_{π} + C_{μ} = \frac{g_{m}}{ω_{T}} = \frac{40 × 10^{−3}}{2π × 800 × 10^{6}} = 8  pF

Cμ = 1 pF

Cπ = 7 pF

rx = 50 Ω

The midband voltage gain is

A_{M} = − \frac{R_{B}}{R_{B}  +  R_{sig}} \frac{r_{π}}{r_{π}  +  r_{x}  +  (R_{B}  ||  R_{sig})} g_{m}R_{L}^{′}

where

R_{L}^{′} = r_{o}  ||  R_{C}  ||  R_{L}

= (100 || 8 || 5) kΩ = 3 kΩ

Thus,

g_{m}R_{L}^{′} = 40 × 3 = 120  V/V

and

A_{M} = −\frac{100}{100  +  5} × \frac{2.5}{2.5  +  0.05  +  (100  ||  5)} × 120

= −39 V/V

and

20 log |AM| = 32 dB

To determine fH we first find Cin,

C_{in} = C_{π} + C_{μ} (1 + g_{m}R_{L}^{′})

= 7 + 1 (1 + 120) = 128 pF

and the effective source resistance R_{sig}^{′}

R_{sig}^{′} = r_{π}  ||  [ r_{x} + (R_{B}  ||  R_{sig})]

= 2.5 || [0.05 + (100 || 5)]

= 1.65 kΩ

Thus,

f_{H} = \frac{1}{2πC_{in} R_{sig}^{′}} = \frac{1}{2π × 128 × 10^{−12} × 1.65 × 10^{3}} = 754  kHz

Finally, as in the case of the CS amplifier, it can be shown that the CE amplifier has a transmission zero with frequency

f_{Z} = \frac{g_{m}}{2πC_{μ}} = \frac{40 × 10^{−3}}{2π × 1 × 10^{−12}} = 6.37  GHz

which is much higher than fH.

Related Answered Questions