Question p.6.9: It is required to form the stiffness matrix of a triangular ...

It is required to form the stiffness matrix of a triangular element 123 for use in stress analysis problems. The coordinates of the element are (1, 1), (2, 1), and (2, 2), respectively.
(a) Assume a suitable displacement field explaining the reasons for your choice.
(b) Form the [B] matrix.
(c) Form the matrix which gives, when multiplied by the element nodal displacements, the stresses in the element. Assume a general [D] matrix.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) There are six degrees of freedom so that the displacement field must include six coefficients. Thus

\begin{aligned}&u=\alpha_1+\alpha_7 x+\alpha_3 y  (i) \\&v=\alpha_4+\alpha_5 x+\alpha_6 y  (ii)\end{aligned}

(b) From Eqs (i) and (ii) and referring to Fig. S.6.9

\begin{aligned}&u_1=\alpha_1+\alpha_2+\alpha_3 \quad v_1=\alpha_4+\alpha_5+\alpha_6 \\&u_2=\alpha_1+2 \alpha_2+\alpha_3 \quad v_2=\alpha_4+2 \alpha_5+\alpha_6 \\&u_3=\alpha_1+2 \alpha_2+2 \alpha_3 \quad v_3=\alpha_4+2 \alpha_5+2 \alpha_6\end{aligned}

Thus

\begin{array}{lll}\alpha_2=u_2-u_1 & \alpha_3=u_3-u_2 & \alpha_1=2 u_1-u_3 \\\alpha_5=v_2-v_1 & \alpha_6=v_3-v_2 & \alpha_4=2 v_1-v_3\end{array}

Therefore

\left\{\begin{array}{l}\alpha_1 \\\alpha_2 \\\alpha_3 \\\alpha_4 \\\alpha_5 \\\alpha_6\end{array}\right\}=\left[\begin{array}{cccccc}2 & 0 & 0 & 0 & -1 & 0 \\-1 & 0 & 1 & 0 & 0 & 0 \\0 & 0 & -1 & 0 & 1 & 0 \\0 & 2 & 0 & 0 & 0 & -1 \\0 & -1 & 0 & 1 & 0 & 0 \\0 & 2 & 0 & 0 & 0 & -1\end{array}\right]\left\{\begin{array}{l}u_1 \\v_1 \\u_2 \\v_2 \\u_3 \\v_3\end{array}\right\}  (iii)

which is of the form

\{\alpha\}=\left[A^{-1}\right]\left\{\delta^e\right\}

From Eq. (6.89)

\{\varepsilon\}=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 1 \\0 & 0 & 1 & 0 & 1 & 0\end{array}\right]\left\{\begin{array}{l}\alpha_1 \\\alpha_2 \\\alpha_3 \\\alpha_4 \\\alpha_5 \\\alpha_6\end{array}\right\}  (6.89)

[C]=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 1 \\0 & 0 & 1 & 0 & 1 & 0\end{array}\right]

Hence

[B]=[C]\left[A^{-1}\right]=\left[\begin{array}{cccccc}-1 & 0 & 1 & 0 & 0 & 0 \\0 & 2 & 0 & 0 & 0 & -1 \\0 & -1 & -1 & 1 & 1 & 0\end{array}\right]

(c) From Eq. (6.69)

\{\sigma\}=[D][C]\left[A^{-1}\right]\left\{\delta^{\mathrm{e}}\right\}  (6.69)

\{\sigma\}=[D][B]\left\{\delta^e\right\}

Thus, for plane stress problems (see Eq. (6.92))

\{\sigma\}=\left\{\begin{array}{l}\sigma_x \\\sigma_y \\\tau_{x y}\end{array}\right\}=\frac{E}{1-v^2}\left[\begin{array}{ccc}1 & v & 0 \\v & 1 & 0 \\0 & 0 & \frac{1}{2}(1-v)\end{array}\right]\left\{\begin{array}{l}\varepsilon_x \\\varepsilon_y \\\gamma_{x y}\end{array}\right\}  (6.92)

[D][B]=\frac{E}{1-v^2}\left[\begin{array}{ccc}1 & v & 0 \\v & 1 & 0 \\0 & 0 & \frac{1}{2}(1-v)\end{array}\right]\left[\begin{array}{cccccc}-1 & 0 & 1 & 0 & 0 & 0 \\0 & 2 & 0 & 0 & 0 & -1 \\0 & -1 & -1 & 1 & 1 & 0\end{array}\right]

i.e.

[D][B]=\frac{E}{1-v^2}\left[\begin{array}{cccccc}-1 & 2 v & 1 & 0 & 0 & -v \\-v & 2 & v & 0 & 0 & -1 \\0 & -\frac{1}{2}(1-v) & -\frac{1}{2}(1-v) & \frac{1}{2}(1-v) & \frac{1}{2}(1-v) & 0\end{array}\right]

For plain strain problems (see Eq. (6.93))

\{\sigma\}=\left\{\begin{array}{c}\sigma_x \\\sigma_y \\\tau_{x y}\end{array}\right\}=\frac{E(1-v)}{(1+v)(1-2 v)}\left[\begin{array}{ccc}1 & \frac{v}{1-v} & 0 \\\frac{v}{1-v} & 1 & 0 \\0 & 0 & \frac{(1-2 v)}{2(1-v)}\end{array}\right]\left\{\begin{array}{l}\varepsilon_x \\\varepsilon_y \\\gamma_{x y}\end{array}\right\}  (6.93)

\begin{aligned}&[D][B]=\frac{F(1-v)}{(1+v)(1-2 v)}\left[\begin{array}{ccc}1 & \frac{v}{(1-v)} & 0 \\\frac{v}{(1-v)} & 1 & 0 \\0 & 0 & \frac{(1-2 v)}{2(1-v)}\end{array}\right]\\&\times\left[\begin{array}{cccccc}-1 & 0 & 1 & 0 & 0 & 0 \\0 & 2 & 0 & 0 & 0 & -1 \\0 & -1 & -1 & 1 & 1 & 0\end{array}\right]\end{aligned}

 

\begin{aligned}{[D][B]=} & \frac{E(1-v)}{(1+v)(1-2 v)} \\& \times\left[\begin{array}{cccccc}-1 & \frac{2 v}{1-v} & 1 & 0 & 0 & -\frac{v}{1-v} \\-\frac{v}{1-v} & 2 & \frac{v}{1-v} & 0 & 0 & -1 \\0 & -\frac{1-2 v}{2(1-v)} & -\frac{1-2 v}{2(1-v)} & \frac{1-2 v}{2(1-v)} &\frac{1-2 v}{2(1-v)} & 0\end{array}\right]\end{aligned}
Screenshot 2022-10-15 192246

Related Answered Questions