Question p.6.8: It is required to formulate the stiffness of a triangular el...

It is required to formulate the stiffness of a triangular element 123 with coordinates (0, 0), (a, 0), and (0, a), respectively, to be used for ‘plane stress’ problems.
(a) Form the [B] matrix.
(b) Obtain the stiffness matrix [K^e].
Why, in general, is a finite element solution not an exact solution?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The element is shown in Fig. S.6.8. The displacement functions for a triangular element are given by Eqs (6.82). Thus

\left.\begin{array}{l}u(x, y)=\alpha_1+\alpha_2 x+\alpha_3 y \\v(x, y)=\alpha_4+\alpha_5 x+\alpha_6 y\end{array}\right\}  (6.82)

\left.\begin{array}{l}u_1=\alpha_1, \quad v_1=\alpha_4 \\u_2=\alpha_1+a \alpha_2, \quad v_2=\alpha_4+a \alpha_5 \\u_3=\alpha_1+a \alpha_3, \quad v_3=\alpha_4+a \alpha_6\end{array}\right\}  (i)

From Eq. (i)

\begin{array}{lll}\alpha_1=u_1 & \alpha_2=\left(u_2-u_1\right) / a & \alpha_3=\left(u_3-u_1\right) / a \\\alpha_4=v_1 &\alpha_5=\left(v_2-v_1\right) / a & \alpha_6=\left(v_3-v_1\right) / a\end{array}

Hence in matrix form

\left\{\begin{array}{l}\alpha_1 \\\alpha_2 \\\alpha_3 \\\alpha_4 \\\alpha_5 \\\alpha_6\end{array}\right\}=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\-1 / a & 0 & 1 / a & 0 & 0 & 0 \\-1 / a & 0 & 0 & 0 & 1 / a & 0 \\0 & 1 & 0 & 0 & 0 & 0 \\0 & -1 / a & 0 & 1 / a & 0 & 0 \\0 & -1 / a & 0 & 0 & 0 & 1 / a\end{array}\right]\left\{\begin{array}{l}u_1 \\v_1 \\u_2 \\v_2 \\u_3 \\v_3\end{array}\right\}

which is of the form

\{x\}=\left[A^{-1}\right]\left\{\delta^e\right\}

Also, from Eq. (6.89)

\{\varepsilon\}=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 1 \\0 & 0 & 1 & 0 & 1 & 0\end{array}\right]\left\{\begin{array}{l}\alpha_1 \\\alpha_2 \\\alpha_3 \\\alpha_4 \\\alpha_5 \\\alpha_6\end{array}\right\}  (6.89)

[C]=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 1 \\0 & 0 & 1 & 0 & 1 & 0\end{array}\right]

Hence

[B]=[C]\left[A^{-1}\right]=\left[\begin{array}{cccccc}-1 / a & 0 & 1 / a & 0 & 0 & 0 \\0 & -1 / a & 0 & 0 & 0 & 1 / a \\-1 / a & -1 / a & 0 & 1 / a & 1 / a & 0\end{array}\right]

(b) From Eq. (6.94)

\left[K^{\mathrm{e}}\right]=\left[[B]^{\mathrm{T}}[D][B] A t\right]  (6.94)

\begin{aligned}{\left[K^e\right] } &=\left[\begin{array}{ccc}-1 / a & 0 & -1 / a \\0 & -1 / a & -1 / a \\1 / a & 0 & 0 \\0 & 0 & 1 / a \\0 & 0 & 1 / a \\0 & 1 / a & 0\end{array}\right] \frac{E}{1-v^2}\left[\begin{array}{ccc}1 & v & 0 \\v & 1 & 0 \\0 & 0 & \frac{1}{2}(1-v)\end{array}\right] \\& \times\left[\begin{array}{cccccc}-1 / a & 0 & 1 / a & 0 & 0 & 0 \\0 & -1 / a & 0 & 0 & 0 & 1 / a \\-1 / a & -1 / a & 0 & 1 / a & 1 / a & 0\end{array}\right] \frac{1}{2} a^2 t\end{aligned}

which gives

\left[K^e\right]=\frac{E t}{4\left(1v^2\right)}\left[\begin{array}{cccccc}3-v & 1+v & -2 & -(1-v) & -(1-v) & -2 v \\1+v & 3-v & -2 v & -(1-v) & -(1-v) & -2 \\-2 & -2 v & 2 & 0 & 0 & 2 v \\-(1-v) & -(1-v) & 0 & 1-v & 1-v & 0 \\-(1-v) & -(1-v) & 0 & 1-v & 1-v & 0 \\-2 v & -2 & -2 v & 0 & 0 & 2\end{array}\right]

Continuity of displacement is only ensured at nodes, not along their edges.

Screenshot 2022-10-15 191305

Related Answered Questions