Question 2.12: Let A = [1 2 2 -7]. (1) Solve the equation Ax ∗^→ = b ∗^→ wh...

Let

A=\begin{bmatrix} 1 & 2 \\ 2 & -7 \end{bmatrix}.

(1) Solve the equation A\overrightarrow{x^{*} }= \overrightarrow{b^{*} } where \overrightarrow{x}=\left(x_{1},x_{2} \right)  and   \overrightarrow{b}=\left(b_{1},b_{2} \right).

(2) Investigate the geometric mapping properties of A.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

As against \overrightarrow{x}A=\overrightarrow{b} in Examples 2.10 and 2.11, here we use column vector \overrightarrow{x^{*} }=\left[\begin{matrix} x_{1} \\ x_{2} \end{matrix} \right] as unknown vector and \overrightarrow{b^{*} }=\left[\begin{matrix} b_{1} \\ b_{2} \end{matrix} \right] as constant vector in A\overrightarrow{x^{*} }= \overrightarrow{b^{*} }  with A as coefficient matrix and \left[A\mid \overrightarrow{b^{*} } \right]_{2\times 3} as augmented matrix.

Now, apply consecutive row operations to

  \left[A\mid \overrightarrow{b^{*} } \right]_{}=\left [ \begin{matrix} 1 & 2 & \vdots b_{1} \\2 & -7& \vdots b_{2} \end{matrix} \right ]

\underset{\text{ }E_{\left(2\right)-2\left(1\right) } }{\longrightarrow}\left [ \begin{matrix} 1 & 2 & \vdots                 b_{1} \\0 & -11& \vdots \ b_{2}-2b_{1} \end{matrix} \right ]=E_{\left(2\right)-2\left(1\right) }\left[A\mid \overrightarrow{b^{*} } \right]_{}

\underset{\text{ }E_{-\frac{1}{11}\left(2\right) } }{\longrightarrow}\left [ \begin{matrix} 1 & 2 & \vdots             b_{1} \\0 & 1& \vdots \ \frac{2b_{1}-b_{2}}{11} \end{matrix} \right ]=E_{-\frac{1}{11}\left(2\right) }E_{\left(2\right)-2\left(1\right) }\left[A\mid \overrightarrow{b^{*} } \right]_{}

\underset{\text{ }E_{\left(1\right)-2\left(2\right) } }{\longrightarrow}\left [ \begin{matrix} 1 & 0 & \vdots \frac{7b_{1}+2b_{2}}{11}\\0 & 1& \vdots \ \frac{2b_{1}-b_{2}}{11} \end{matrix} \right ]=E_{\left(1\right)-2\left(2\right) }E_{-\frac{1}{11}\left(2\right) }E_{\left(2\right)-2\left(1\right) }\left[A\mid \overrightarrow{b^{*} } \right]_{}.

(a) The solution of A\overrightarrow{x^{*} }= \overrightarrow{b^{*} }

\left \{ \begin{matrix} x_{1}=\frac{1}{11}\left(7b_{1}+2b_{2}\right)  \\ \\ x_{2}=\frac{1}{11}\left(2b_{1}-b_{2}\right)\end{matrix} \right.  , or

\overrightarrow{x^{*} }=\left[\begin{matrix} x_{1} \\ x_{2} \end{matrix} \right] =\frac{1}{11} \begin{bmatrix} 7 & 2 \\ 2 & -1 \end{bmatrix} \left[\begin{matrix} b_{1} \\ b_{2} \end{matrix} \right] =A^{-1}\overrightarrow{b^{*} }.

(b) The invertibility of A and its inverse A^{-1}

I_{2}= E_{\left(1\right)-2\left(2\right)}E_{-\frac{1}{11}\left(2\right) }E_{\left(2\right)-2\left(1\right) }A

\Rightarrow A^{-1}=E_{\left(1\right)-2\left(2\right)}E_{-\frac{1}{11}\left(2\right) }E_{\left(2\right)-2\left(1\right) }=\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{11} \end{bmatrix}\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}

=\frac{1}{11}\begin{bmatrix} 7 & 2 \\ 2 & -1 \end{bmatrix}.

(c) The elementary factorization of A

A= E^{-1}_{\left(2\right)-2\left(1\right) } E^{-1}_{-\frac{1}{11}\left(2\right) } E^{-1}_{\left(1\right)-2\left(2\right) } =E_{\left(2\right)+2\left(1\right) }E_{-11\left(2\right) }E_{\left(1\right)+2\left(2\right) }

=\begin{bmatrix} 1 & 0\\ 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0\\ 0 & -11 \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}.    (2.7.65)

(d) The determinants det A and det A^{-1}

det A = 1\cdot (−11) \cdot 1 = −11,

det A^{-1}= 1 \cdot \left(-\frac{1}{11} \right)\cdot 1 =-\frac{1}{11}.

See Fig. 2.63.

Note that A has two distinct real eigenvalues -3\pm \sqrt{20}.

4

Related Answered Questions

Question: 2.25

Verified Answer:

Although A is orthogonal, i.e. A^{*}=A^{-1}...
Question: 2.11

Verified Answer:

For \overrightarrow{x}=\left(x_{1},x_{2} \...