Question 2.13: Let A =[2 3 -4 -6 ].(1) Solve the equation Ax∗^→ = b∗^→ .(2)...

Let

A=\begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}.

(1) Solve the equation A\overrightarrow{x^{*} } =\overrightarrow{b^{*} }.

(2) Try to investigate the geometric mapping properties of A.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Write A\overrightarrow{x^{*} } =\overrightarrow{b^{*} } out as

\left \{ \begin{matrix} 2x_{1}+3 x_{2}=b_{1}  \\ -4x_{1}-6 x_{2}=b_{2} \end{matrix} \right..

The equations have solutions if and only if 2b_{1}+b_{2}=0 . In this case, the solutions are x_{1}=\frac{1}{2}\left(b_{1}  –  3x_{2}\right) with x_{2} arbitrary scalars.

Apply row operations to

\left[A\mid \overrightarrow{b^{*} } \right]_{}=\left [ \begin{matrix} 2& 3 & \vdots b_{1} \\-4 & -6 & \vdots b_{2} \end{matrix} \right ]

\underset{\text{ }E_{\frac{1}{2} \left(1\right) } }{\longrightarrow}\left [ \begin{matrix} 1 & \frac{3}{2} & \vdots \frac{b_{1}}{2} \\-4 & -6 & \vdots \ b_{2} \end{matrix} \right ]=E_{\frac{1}{2} \left(1\right) }\left[A\mid \overrightarrow{b^{*}}\right]

\underset{\text{ }E_{\left(2\right)+4\left(1\right) } }{\longrightarrow}\left [ \begin{matrix} 1 & \frac{3}{2} & \vdots               \frac{b_{1}}{2} \\0 & 0 & \vdots \ 2b_{1}+b_{2} \end{matrix} \right ]= E_{\left(2\right)+4\left(1\right) } E_{\frac{1}{2} \left(1\right) }\left[A\mid \overrightarrow{b^{*} } \right].

Since   r\left(A\right)=1  and elementary matrices preserve ranks, then

A\overrightarrow{x^{*} } =\overrightarrow{b^{*} } has a solution.

  ⇔r\left(A\right)= r\left(\left[A\mid \overrightarrow{b^{*} } \right]\right) ⇔ 2b_{1}+b_{2}=0 .

This constrained condition coincides with what we obtained via traditional method. On the other hand,

\begin{bmatrix} 1 & \frac{3}{2} \\ 0 & 0 \end{bmatrix} =E_{\left(2\right)+4\left(1\right) } E_{\frac{1}{2} \left(1\right) }A

\Rightarrow A=E^{-1}_{\frac{1}{2} \left(1\right)}E^{-1}_{\left(2\right)+4\left(1\right)}\begin{bmatrix} 1 & \frac{3}{2} \\ 0 & 0 \end{bmatrix}=\begin{bmatrix} 2& 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{3}{2} \\ 0 & 0 \end{bmatrix}.

See Fig. 2.64.

7

Related Answered Questions

Question: 2.25

Verified Answer:

Although A is orthogonal, i.e. A^{*}=A^{-1}...
Question: 2.11

Verified Answer:

For \overrightarrow{x}=\left(x_{1},x_{2} \...