Question 10.1: Maximum Electric Field Sketch the maximum lateral field ξm ...

Maximum Electric Field

Sketch the maximum lateral field ξ_m as a function of V_D .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

ξ_m has different functional forms depending on whether V_D is larger or smaller than V_{Dsat}. \text{For } V_D\lt V_{Dsat} , the device is in the linear region. From Equation 9.2.8, we have

I_D=C_{ox}W[V_G-V_T-V(y)]\frac{\mu _{eff}\xi (y)}{1+[\xi (y)/\xi _{sat}]}                                                            (9.2.8)

Expressing the field as the negative derivative of voltage and integrating to an arbitrary location y, we have

I_Dy=\mu WC_{ox}\left(V_G-V_T-\frac{V(y)}{2} \right) V(y)\frac{1}{1+(V_D/\xi _{sat}y)}

By rearranging terms, we can solve for V(y):

V(y)=(V_G-V_T)-\sqrt{(V_G-V_T)^2-\frac{2[1+(V_D/\xi _{sat}y)]I_Dy}{\mu WC_{ox}} }

The field ξ(y) is

\xi (y)=-\frac{dV(y)}{dy} =\frac{I_D}{\mu WC_{ox}\sqrt{(V_G-V_T)^2-\frac{2[1+(V_D/\xi _{sat}y)]I_Dy}{\mu WC_{ox}} }}

ξ _m at the drain (y = L) is

\xi _m(V_D)=\frac{\frac{\mu WC_{ox}}{L}\left(V_G-V_T-\frac{V_D}{2} \right)V_D\frac{1}{1+(V_D/\xi _{sat}L)} }{\sqrt{[\mu WC_{ox}(V_G-V_T)]^2-2(\mu WC_{ox})^2\left(V_G-V_T-\frac{V_D}{2} \right)V_D } }

For   V_D > V_{Dsat}, \ ξ_m is given by Equation 10.1.14 and can be approximated by Equation 10.1.15.

\xi _m=\left[\frac{(V_D-V_{Dsat})^2}{\ell ^2}+\xi _{sat}^2 \right] ^{1/2}                                                              (10.1.14)

\xi _m\approx \frac{(V_D-V_{Dsat})}{\ell } \ \ \ \text{ for } \ \ \ (V_D-V_{Dsat})\gt 1 \ V                                                              (10.1.15)

Hence, a sketch of the field can be drawn.

123

Related Answered Questions