Question 10.3: MOSFET Time-to-Failure For a MOSFET with the parameters giv...

MOSFET Time-to-Failure

For a MOSFET with the parameters given below, calculate the time-to-failure \tau for operation at V_{DD} = 5 V. If the device is to be used in a system that must operate reliably for 10 years, what is the maximum drain-supply voltage that can be used?
Device parameters are x_{ox} = 20  nm, x_j = 0.2  μm, V_{Dsat} = 1  V, V_T = 0.7  V , channel length L = 1 μm. Use the failure criteria \Delta I_D/I_D = 10% with K_1 = 10 and m = 3.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using Equation 10.1.16,

\ell =0.22x_j^{1/2}x_{ox}^{1/3}                                                  (10.1.16)

\ell =0.22 x_{ox}^{1/3}x_j^{1/2}=0.124 \ \mu m

Then from Equation 10.1.15,

\xi _m\approx \frac{(V_D-V_{Dsat})}{\ell } \ \ \ \ \text{ for } \ \ \ \ (V_D-V_{Dsat})\gt 1V                                                  (10.1.15)

\xi _m\approx \frac{V_D-V_{Dsat}}{\ell }\approx 3.23 \times 10^5 \ V \ cm^{-1}

From Equation 10.2.6, and the associated value of A_i/B_i ,

I_{sub}\approx \frac{A_i}{B_i} (V_D-V_{Dsat})I_D\exp\left(-\frac{\ell B_i}{V_D-V_{Dsat}} \right)                                                  (10.2.6)

\frac{I_{sub}}{I_D} =1.2(V_D-V_{Dsat})\exp\left(-\frac{B}{\xi _m} \right) =0.025

Finally, using Equation 10.4.1,

\tau \approx K_1\left(\frac{I_{sub}}{I_D} \right) ^{-m}                                                  (10.4.1)

\tau =K_1\left(\frac{I_{sub}}{I_D} \right) ^{-3}=7.4 days

Note that in this problem, L and V_G are not explicitly utilized because V_{Dsat} , is specified for the given biasing condition.

For a lifetime of 10 years, \tau = 3.15 \times 10^8 s. Therefore, we need

  \frac{I_{sub}}{I_D} =3.17\times10^{-3}\Rightarrow \xi _m\lt 2.4\times10^5 \ Vcm^{-1}

The corresponding value of V_{DD(max)}\approx 4.22 \ V

Related Answered Questions