Question 19.7: Predicting Whether a Redox Reaction Is Spontaneous Predict f...

Predicting Whether a Redox Reaction Is Spontaneous
Predict from Table 19.1 whether Pb^{2+}(aq) can oxidize Al(s) or Cu(s) under standard state conditions. Calculate E° for each reaction at 25 °C.

STRATEGY
To predict whether a redox reaction is spontaneous, remember that an oxidizing agent can oxidize any reducing agent that lies below it in the table but can’t oxidize one that lies above it. To calculate E° for a redox reaction, sum the E° values for the reduction and oxidation half-reactions. If the value of E° is positive then the reaction is spontaneous.

TABLE 19.1 Standard Reduction Potentials at 25 °C
Reduction Half-Reaction E° (V)
 

 

F_{2}(g) + 2 e^{-}  →  2F^{-}(aq) 2.87  

 

H_{2}O_{2}(aq) + 2 H^{+}(aq) + 2 e^{-} → 2H_{2}O(l) 1.78
MnO^{-}_{4}(aq) + 8 H^{+}(aq) + 5 e^{-}→ Mn^{2+}(aq) + 4 H_{2}O(l) 1.51
Cl_{2}(g) + 2 e^{-} → 2Cl^{-}(aq) 1.36
Cr_{2}O^{2-}_{7}(aq) + 14 H^{+}(aq) + 6 e^{-} → 2 Cr^{3+}(aq) + 7 H_{2}O(l) 1.36
O_{2}(g) + 4 H^{+}(aq) + 4 e^{-} → 2 H_{2}O(l) 1.23
Br_{2}(aq) + 2 e^{-} → 2 Br^{-}(aq) 1.09
Ag^{+}(aq) + e^{-} → Ag(s) 0.80
Fe^{3+}(aq) + e^{-} → Fe^{2+}(aq) 0.77
O_{2}(g) + 2 H^{+}(aq) + 2 e^{-} → H_{2}O_{2}(aq) 0.70
I_{2}(s) + 2 e^{-} → 2 I^{-}(aq) 0.54
O_{2}(g) + 2 H_{2}O(l) + 4 e^{-} → 4 OH^{-}(aq) 0.40
Cu^{2+}(aq) + 2 e^{-} → Cu(s) 0.34
Sn^{4+}(aq) + 2 e^{-} → Sn^{2+}(aq) 0.15
2 H^{+}(aq) + 2 e^{-} → H_{2}(g) 0
Pb^{2+}(aq) + 2 e^{-} → Pb(s) -0.13
Ni^{2+}(aq) + 2 e^{-} → Ni(s) -0.26
Cd^{2+}(aq) + 2 e^{-} → Cd(s) -0.40
Fe^{2+}(aq) + 2 e^{-} → Fe(s) -0.45
Zn^{2+}(aq) + 2 e^{-} → Zn(s) -0.76
2 H_{2}O(l) + 2 e^{-} → H_{2}(g) + 2 OH^{-}(aq) -0.83
Al^{3+}(aq) + 3 e^{-}  → Al(s) -1.66
Mg^{2+}(aq) + 2 e^{-} → Mg(s) -2.37
Na^{+}(aq) + e^{-} → Na(s) -2.71
Li^{+}(aq) + e^{-} → Li(s) -3.04
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Pb^{2+}(aq) is above Al(s) in the table but below Cu(s). Therefore, Pb^{2+}(aq) can oxidize Al(s) but can’t oxidize Cu(s). To confirm these predictions, calculate E° values for the overall reactions.

For the oxidation of Al by Pb^{2+}, E° is positive (1.53 V), and the reaction is therefore spontaneous:

\begin{array}{rc} \begin{matrix} 3 × [Pb^{2+}(aq) + 2 e^{-} → Pb(s)] \\ 2 × [ Al(s) → Al^{3+}(aq) + 3 e^{-} \end{matrix} & \begin{matrix} E° = -0.13  V \\ E° = 1.66  V \\ \end{matrix} \\ \hline \begin{matrix} 3 Pb^{2+}(aq) + 2 Al(s) → 3 Pb(s) + 2 Al^{3+}(aq) \\ \end{matrix} & \begin{matrix} E° = 1.53  V \\ \end{matrix}\end{array}

Note that we have multiplied the Pb^{2+} /Pb half-reaction by a factor of 3 and the Al/Al^{3+} half-reaction by a factor of 2 so that the electrons will cancel, but we do not multiply the E° values by these factors because electrical potential is an intensive property. For the oxidation of Cu by Pb^{2+}, E° is negative (-0.47 V) and the reaction is therefore nonspontaneous:

\begin{array}{rc} \begin{matrix} Pb^{2+}(aq) + 2 e^{-} → Pb(s0 \\ Cu(s) → Cu^{2+}(aq) + 2 e^{ -}\end{matrix} & \begin{matrix} E° = -0.13  V \\E° = -0.34  V \\ \end{matrix} \\ \hline \begin{matrix} Pb^{2+}(aq) + Cu(s) → Pb(s) + Cu^{2+}(aq) \\ \end{matrix} & \begin{matrix} E° = -0.47  V \\ \end{matrix}\end{array}

Related Answered Questions