Question 9.1: Pure component nucleate boiling takes place on the surface o...

Pure component nucleate boiling takes place on the surface of a 1-in. OD horizontal tube immersed in a saturated liquid organic compound. The tube-wall temperature is 453.7 K and the system pressure is 310.3 kPa. Fluid properties are given in the table below. Calculate the heat-transfer coefficient and wall heat flux using:
(a) The Forster–Zuber correlation.
(b) The Mostinski correlation.
(c) The Mostinski correlation with Palen’s recommendation for F_{P} .
(d) The Cooper correlation.
(e) The Stephan–Abdelsalam correlation

Fluid Property Value
Vapor density (kg/m³) 18.09
Liquid density (kg/m³) 567
Liquid heat capacity (J/kg · K) 2730
Liquid viscosity (kg/m · s) 156 \times   10^{-6}
Vapor viscosity (kg/m · s) 7.11 \times  10^{-6}
Liquid thermal conductivity (W/m · K) 0.086
Surface tension (dyne/cm) 8.2
Latent heat of vaporization (J/kg) 272,000
Critical pressure (kPa) 2550
Saturation temperature (K) at 310.3 kPa 437.5
Vapor pressure (kPa) at 453.7 K 416.6
Molecular weight 110.37
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) For the Forster–Zuber correlation, first calculate ΔT_{e} and ΔP_{sat}·

ΔT_{e} = T_{w}  –  T_{sat} = 453.7  –  437.5 = 16.2 K

ΔP_{sat} = P_{sat}( T_{w})  –  P_{sat}( T_{sat})

= 416.6 – 310.3

ΔP_{sat} =  106.3 kPa = 106,300 Pa

All the physical properties appearing in the correlation are given in proper SI units except the surface tension, which is:

\sigma  =  8.2  dyne / cm =8.2  \times  10^{-3} N / m

Substituting the appropriate values into Equation (9.1) yields:

h_{n b}=0.00122 \frac{k_{L}^{0.79}  C_{P, L}^{0.45} \rho_{L}^{0.49} g_{c}^{0.25} \Delta T_{e}^{0.24} \Delta P_{s a t}^{0.75}}{\sigma^{0.5} \mu_{L}^{0.29} \lambda^{0.24} \rho_{V}^{0.24}}

 

=\frac{0.00122(0.086)^{0.79}(2730)^{0.45}(567)^{0.49}(1.0)^{0.25}(16.2)^{0.24}(106,300)^{0.75}}{\left(8.2  \times  10^{-3}\right)^{0.5}\left(156  \times  10^{-6}\right)^{0.29}(272,000)^{0.24}(18.09)^{0.24}}

 

h_{n b}=5512  W / m ^{2} \cdot K

The heat flux at the pipe wall is given by:

\hat{q}=h_{n b} \Delta T_{e}=5512  \times  16.2=89,294 \cong 89,300  W / m ^{2}

(b) For the Mostinski correlation, first calculate the pressure correction factor using Equation (9.4).

P_{ r }=P / P_{c}=\frac{310.3}{2550}=0.1217

 

F_{P}=1.8 P_{r}^{0.17}+4 P_{r}^{1.2}+10 P_{r}^{10}

 

F_{P}=1.8(0.1217)^{0.17}+4(0.1217)^{1.2}+10(0.1217)^{10}=1.5777

Since \Delta T_{e} =  16.2 K is known, use Equation (9.3b) to calculate the heat-transfer coefficient.

h_{n b}=1.167 \times 10^{-8} P_{c}^{2.3} \Delta T_{e}^{2.333} F_{P}^{3.333}

 

=1.167 \times 10^{-8}(2550)^{2.3}(16.2)^{2.333}(1.5777)^{3.333}

 

h_{n b}=2421  W / m ^{2} \cdot K

The heat flux is calculated as before:

\hat{q}=h_{n b} \Delta T_{e}=2421 \times 16.2=39,220  W / m ^{2}

(c) The calculation is the same as in part (b) except that Equation (9.5) is used to calculate the pressure correction factor.

F_{P}=2.1 P_{r}^{0.27}+\left[9+\left(1-P_{r}^{2}\right)^{-1}\right] P_{r}^{2}

 

=2.1(0.1217)^{0.27}+\left\{9+\left[1-(0.1217)^{2}\right]^{-1}\right\}(0.1217)^{2}

 

F_{P}=1.3375

 

h_{n b}=1.167  \times  10^{-8}(2550)^{2.3}(16.2)^{2.333}(1.3375)^{3.333}

 

h_{n b}=1396  W / m ^{2} \cdot K

 

\hat{q}=h_{n b} \Delta T_{e}=1396  \times  16.2=22,615  W / m ^{2}

(d) To use the Cooper correlation, substitute \hat{q}=h_{n b} \Delta T_{e} in Equation (9.6b) to obtain:

h_{n b}=55  \hat{q}^{0.67}  P_{r}^{0.12}\left(-\log _{10} P_{ r }\right)^{-0.55} M^{-0.5}            (9.6b)

h_{n b}=55\left(h_{n b} \Delta T_{e}\right)^{0.67} P_{r}^{0.12}\left(-\log _{10} P_{ r }\right)^{-0.55} M^{-0.5}

Solving for h_{n b} gives:

h_{n b}=\left\{55 \Delta T_{e}^{0.67} P_{r}^{0.12}\left(-\log _{10} P_{r}\right)^{-0.55} M^{-0.5}\right\}^{3.03}

 

=\left\{55(16.2)^{0.67}(0.1217)^{0.12}\left(-\log _{10} 0.1217\right)^{-0.55}(110.37)^{-0.5}\right\}^{3.03}

 

h_{n b}=23,214  W / m ^{2} \cdot K

The heat flux is then:

\hat{q}=h_{n b} \Delta T_{e}=23,214 \times 16.2 \cong 376,070  W / m ^{2}

(e) For the Stephan–Abdelsalam correlation, the theoretical bubble diameter is calculated using Equation (9.12). A contact angle of 35º is assumed for a non-cryogenic organic compound

d_{B}=0.0146 \theta_{c}\left[\frac{2 g_{c} \sigma}{g\left(\rho_{L}  –  \rho_{V}\right)}\right]^{0.5}=0.0146  \times  35\left[\frac{2  \times  1.0  \times  8.2  \times  10^{-3}}{9.81(567  –  18.09)}\right]^{0.5}

 

d_{B}=8.918 \times 10^{-4} m

The five dimensionless parameters are calculated using Equations (9.7) to (9.11). Since the heat flux is unknown, it is retained in Z_{1}.

Z_{1}=\frac{\hat{q} d_{B}}{k_{L} T_{s a t}}=\frac{\hat{q}  \times  8.918  \times  10^{-4}}{0.086  \times  437.5}=2.370 \times 10^{-5} \hat{q}

 

Z_{2}=\frac{\alpha_{L}^{2} \rho_{L}}{g_{c} \sigma d_{B}}=\frac{\left(5.556  \times  10^{-8}\right)^{2}  \times  567}{1.0  \times  8.2  \times  10^{-3}  \times  8.918  \times  10^{-4}}=2.393 \times 10^{-7}

 

Z_{3}=\frac{g_{c} \lambda d_{B}^{2}}{\alpha_{L}^{2}}=\frac{1.0  \times  272,000\left(8.918  \times  10^{-4}\right)^{2}}{\left(5.556  \times  10^{-8}\right)^{2}}=7.008 \times 10^{13}

 

Z_{4}=\rho_{ V } / \rho_{ L }=18.09 / 567=0.031905

 

Z_{5}=\left(\rho_{ L }-\rho_{ V }\right) / \rho_{ L }=(567-18.09) / 567=0.9681

Substituting these values into Equation (9.13) yields:

\frac{h_{n b} d_{B}}{k_{L}}=0.23 Z_{1}^{0.674} Z_{2}^{0.35} Z_{3}^{0.371} Z_{4}^{0.297} Z_{5}^{-1.73}

 

=0.23\left(2.370  \times  10^{-5} \hat{q}\right)^{0.674}\left(2.393 \times 10^{-7}\right)^{0.35}\left(7.008  \times  10^{13}\right)^{0.371}(0.031905)^{0.297}(0.9681)^{-1.73}

 

\frac{h_{n b} d_{B}}{k_{L}}=0.04402 \hat{q}^{0.674}

Substituting \hat{q}=h_{n b} \Delta T_{e}= h_{n b} × 16.2 gives:

h_{n b}=\left(k_{L} / d_{B}\right) \times 0.04402\left(16.2  h_{n b}\right)^{0.674}

 

=\left(0.086 / 8.918 \times 10^{-4}\right) \times 0.04402(16.2)^{0.674}  h_{n b}^{0.674}

 

h_{n b}=27.739  h_{n b}^{0.674}

 

h_{n b}=26,709  W / m ^{2} \cdot K

Finally, the heat flux is given by:

\hat{q}=h_{n b} \Delta T_{e}=26,709 \times 16.2=432,686 W / m ^{2}

The calculated values of the heat-transfer coefficient are summarized in the following table:

Correlation h_{n b} (W/m²·K)
Forster–Zuber 5512
Mostinski 2421
Modified Mostinski 1396
Cooper 23,214
Stephan–Abdelsalam 26,709

The predictions of the various correlations differ by a huge amount, the ratio of largest to smallest value being nearly 20. One reason for the wide variation is that nucleate boiling is very sensitive to the precise condition of the surface on which boiling occurs. Although the factors that govern the nucleation process are reasonably well understood (7–10), it is not practical to specify the detailed surface characteristics required to rigorously model the phenomenon. Even if this could be done, it would be of dubious utility in equipment design because the surface characteristics change in an uncontrollable manner over time due to aging, corrosion, fouling, cleaning procedures, etc. As a result, the variability exhibited by the calculated values actually reflects the variability observed among the sets of experimental data upon which the various correlations are based [2]. Fortunately, tests with commercial tube bundles indicate that the effect of surface condition is much less pronounced in the operation of industrial equipment [11]. Nevertheless, significant conservatism in equipment design is warranted by the level of uncertainty in the fundamental boiling  correlations.

Related Answered Questions