Question 6.8: SHAPE PERTURBATION OF A RECTANGULAR CAVITY A thin screw of r...

SHAPE PERTURBATION OF A RECTANGULAR CAVITY A thin screw of radius\ r_{0} extends a distance \ \ell  through the center of the top wall of a rectangular cavity operating in the \ TE_{101} mode, as shown in Figure 6.26. If the cavity is air filled, use

(6.107)\ \frac{\omega -\omega _{0}}{\omega _{0}} \simeq \frac{\int_{\Delta V }^{}{\left(\mu \left|\bar{H_{0}} \right|^{2}-\epsilon \left|\bar{E_{0}} \right|^{2} \right)}dv }{ \int_{ V_{0} }^{}{\left(\mu \left|\bar{H_{0}} \right|^{2}+\epsilon \left|\bar{E_{0}} \right|^{2} \right)}dv}

to derive an expression for the change in resonant frequency from the unperturbed cavity.

Screenshot (78)
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From(6.42a)\ E_{y}=E_{0}\sin \frac{\pi x}{a} \sin \frac{\ell \pi z}{d}

(6.42c)\ H_{z}=\frac{j\pi E_{0}}{k\eta a} \cos \frac{\pi x}{a} \sin \frac{\ell \pi z}{d}

\ E_{y}=A\sin \frac{\pi x}{a} \sin \frac{\pi z}{d}

 

\ H_{x}=\frac{-jA}{Z_{TE}} \sin \frac{\pi x}{a} \cos \frac{\pi z}{d}

 

\ H_{z}=\frac{j\pi A}{k\eta a} \cos \frac{\pi x}{a} \sin \frac{ \pi z}{d}

If the screw is thin, we can assume that the fields are constant over the cross
section of the screw and can be represented by the fields at x = a/2, z = d/2:

\ E_{y}\left(x=\frac{a}{2},y,z=\frac{d}{2} \right) =A

 

\ H_{x}\left(x=\frac{a}{2},y,z=\frac{d}{2} \right) =0

 

\ H_{z}\left(x=\frac{a}{2},y,z=\frac{d}{2} \right) =0
Then the numerator of (6.107) can be evaluated as

\ \int_{\Delta V}^{}{\left(\mu \left|\bar{H_{0}} \right|^{2}-\epsilon \left|\bar{E_{0} } \right| ^{2} \right) } dv=-\epsilon _{0}\int_{\Delta V}^{}{A^{2}}\;dv=-\epsilon _{0}A^{2}\Delta V,

where\ \Delta V=\pi \ell r^{2}_{0} is the volume of the screw. The denominator of (6.107) is,from (6.43),

\ \int_{\Delta V}^{}{\left(\mu \left|\bar{H_{0}} \right|^{2}-\epsilon \left|\bar{E_{0} } \right| ^{2} \right) } dv=\frac{adb\epsilon _{0}A^{2}}{2} =\frac{V_{0}\epsilon _{0}A^{2}}{2} ,

where \ V_{0}=adb is the volume of the unperturbed cavity. Then (6.107) gives

\ \frac{\omega -\omega _{0}}{\omega _{0}} =\frac{-2\ell \pi r^{2}_{0} }{adb} =\frac{-2\Delta V}{V_{0}},

which indicates a lowering of the resonant frequency.

Related Answered Questions