Question 3.5: STRIPLINE DESIGN Find the width for a 50 Ω copper stripline ...

STRIPLINE DESIGN

Find the width for a 50 Ω copper stripline conductor with b = 0.32 cm and \epsilon _r = 2.20. If the dielectric loss tangent is 0.001 and the operating frequency is 10 GHz, calculate the attenuation in dB/λ. Assume a conductor thickness of t = 0.01 mm.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Because \ \sqrt{\epsilon _{r}} Z_{0}=\sqrt{2.2} \left(50\right) =74.2 \lt 120 and x=30\pi /\left(\sqrt{\epsilon _{r}}Z_{0} \right) -\left(0.441\right) =0.830 , (3.180) gives the strip width as W = bx = (0.32)(0.830) = 0.266 cm.

\frac{W}{b} = \begin{cases}x &  for   \sqrt{\epsilon _{r}}Z_{0}\lt 120\Omega \\ 0.85-\sqrt{0.6-x} &  for   \sqrt{\epsilon _{r}}Z_{0} \gt 120\Omega \end{cases}                         (3.180a)

x=\frac{30\pi }{\sqrt{\epsilon _{r} }Z_0}-0.441.                          (3.180b)

At 10 GHz, the wave number is

\ k=\frac{2\pi f\sqrt{\epsilon _{r}} }{c} =310.6m^{-1}.
From (3.30) the dielectric attenuation is
\ \alpha _{d}=\frac{k\tan \delta }{2}=\frac{\left(310.6\right)\left(0.001\right) }{2}=0.155Np/m.
The surface resistance of copper at 10 GHz is\ R_{s}=0.026\Omega . Then from (3.181)

\alpha _{c}= \begin{cases} \frac{2.7\times 10^{-3}R_{s}\epsilon _{r}Z_{0}}{30\pi \left(b-t\right) }A &   for   \sqrt{\epsilon _{r}}Z_{0}\lt 120\Omega \\ \frac{0.16R_{s}}{Z_{0}b}B &   for   \sqrt{\epsilon _{r}}Z_{0} \gt 120\Omega \end{cases}     Np/m                             (3.181)

the conductor attenuation is

\ \alpha _{c}= \frac{2.7\times 10^{-3}R_{s}\epsilon _{r}Z_{0}A}{30\pi \left(b-t\right)}=0.1222Np/m

since A = 4.74. The total attenuation constant is
\ \alpha=\alpha_{d}+\alpha_{c}=0.277Np/m.
In dB,

\ \alpha\left(dB\right)=20\log e^{\alpha}=2.41dB/m.

At 10 GHz, the wavelength on the stripline is

\ \lambda =\frac{c}{\sqrt{\epsilon _{r}f} } =2.02cm,

so in terms of wavelength the attenuation is
\ \alpha\left(dB\right)=\left(2.41\right)\left(0.0202\right)=0.049dB/\lambda

Related Answered Questions