Question 2.25: Study the affine transformation T(x^→ ) = (−2, 2√3) + x^→A, ...
Study the affine transformation
T\left(\overrightarrow{x} \right) =\left(-2, 2\sqrt{3} \right) +\overrightarrow{x}A , where A=\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3} }{2} \\ \\ \frac{\sqrt{3} }{2} & -\frac{1}{2} \end{bmatrix}.
Learn more on how we answer questions.
Although A is orthogonal, i.e. A^{*}=A^{-1} , but its determinant det A = −1. Therefore, the associated T is not a rotation.
The characteristic polynomial of A is
det\left(A-tI_{2} \right)=\left|\begin{matrix} \frac{1}{2}-t & \frac{\sqrt{3} }{2} \\ \frac{\sqrt{3} }{2} & -\frac{1}{2}-t \end{matrix} \right| =t^{2}-1,
so A has eigenvalues 1 and −1. According to 1 in (2.8.27), the associated T is a reflection.
Solve
\overrightarrow{x} \left(A-I_{2} \right)=\left(x_{1} x_{2} \right)\begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3} }{2} \\ \\ \frac{\sqrt{3} }{2} & -\frac{3}{2} \end{bmatrix}= \left(0 0\right)
and get the associated eigenvectors \overrightarrow{v}=t\left(\sqrt{3} , 1\right), for t ∈ R and t ≠ 0. Pick up a unit vector \overrightarrow{v_{1}}=\frac{1}{2} \left(\sqrt{3} , 1\right). On the other hand, solve
\overrightarrow{x} \left(A+I_{2} \right)=\left(x_{1} x_{2} \right)\begin{bmatrix} \frac{3}{2} & \frac{\sqrt{3} }{2} \\ \\ \frac{\sqrt{3} }{2} & \frac{1}{2} \end{bmatrix}= \left(0 0\right)
and get the associated eigenvectors \overrightarrow{v}=t\left(-1,\sqrt{3}\right). Pick up a unit vector \overrightarrow{v_{2}}=\frac{1}{2} \left(-1,\sqrt{3}\right). This \overrightarrow{v_{2}} is the direction of reflection. Note that \overrightarrow{v_{2}} is perpendicular to \overrightarrow{v_{1}}, so that A is an orthogonal reflection with respect to the axis \ll \overrightarrow{v_{1}}\gg.
To see if the original affine transformation T\left(\overrightarrow{x} \right)=\overrightarrow{x_{0} }+\overrightarrow{x}A is an orthogonal reflection with respect to a certain axis, this is our problem. Suppose the axis is of the form \overrightarrow{a_{0} }+\ll \overrightarrow{v_{1}}\gg, then
T\left(\overrightarrow{x} \right)=\overrightarrow{x_{0} }+\overrightarrow{x}A= \overrightarrow{x_{0} }+\overrightarrow{a_{0} }A+\left(\overrightarrow{x} -\overrightarrow{a_{0} }\right)A
\Rightarrow \overrightarrow{a_{0} }=\overrightarrow{x_{0} }+\overrightarrow{a_{0} }A
\Rightarrow \overrightarrow{x_{0} }=\overrightarrow{a_{0} }\left(I_{2}-A \right) which implies that \overrightarrow{x_{0} }\left(I_{2}+A \right)= \overrightarrow{0}, i.e. \overrightarrow{x_{0} }A=-\overrightarrow{x_{0} } or \overrightarrow{x_{0} } is an eigenvector of A corresponding to −1. (2.8.36)
For the given \overrightarrow{x_{0} }=\left(-2,2\sqrt{3} \right), solve
\overrightarrow{x} \left(I_{2}-A \right) =\overrightarrow{x}\left|\begin{matrix} \frac{1}{2} & -\frac{\sqrt{3} }{2} \\ -\frac{\sqrt{3} }{2} & \frac{3}{2} \end{matrix} \right|=\left(-2,2\sqrt{3} \right) , where \overrightarrow{x}= \left(x_{1}, x_{2}\right)
and the axis is x_{1}-\sqrt{3} x_{2}=-4. Of course, any point on it, say (−4, 0), can be used as \overrightarrow{a_{0} } and the axis is the same as \overrightarrow{a_{0} }+\ll \overrightarrow{v_{1}}\gg. See Fig. 2.109.
We can reinterpret the transformation \overrightarrow{x}\rightarrow T\left(\overrightarrow{x} \right) as follows.
\overrightarrow{x}=\left(x_{1},x_{2} \right)\overset{orthogonal reflection}{\underset{with axis \ll \overrightarrow{e_{1}}\gg }{\longrightarrow}} \overrightarrow{x}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
=\left(x_{1},-x_{2} \right)\overset{rotation with}{\underset{center at \overrightarrow{0} and through 60^{\circ } }{\longrightarrow}} \overrightarrow{x}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3} }{2} \\ -\frac{\sqrt{3} }{2} & \frac{1}{2} \end{bmatrix}
= \overrightarrow{x} \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3} }{2} \\ \frac{\sqrt{3} }{2} & -\frac{1}{2} \end{bmatrix}
= \overrightarrow{x} A \overset{translation}{\underset{along \overrightarrow{x_{0}}= \left(-2,2\sqrt{3} \right) }{\longrightarrow}}\overrightarrow{x_{0}}+\overrightarrow{x}A=T\left( \overrightarrow{x}\right).
Fig. 2.110 illustrates all the steps involved.
What is the image of the unit circle x^{2}_{1}+x^{2}_{2}=1? As it might be expected beforehand, since A, as a mapping, does keep the circle invariant while the transformation \overrightarrow{x}\longrightarrow \overrightarrow{x_{0}}+\overrightarrow{x} preserves everything, the image is the circle \left| \overrightarrow{x}-\overrightarrow{x_{0}}\right|=1. Formally, we prove this as follows.
\lt \overrightarrow{x},\overrightarrow{x} \gt=\overrightarrow{x}\overrightarrow{x^{*} } =x^{2}_{1}+x^{2}_{2}=1
\Rightarrow \left(T\left(\overrightarrow{x}\right)- \overrightarrow{x_{0}}\right)A^{-1}\left[\left(T\left(\overrightarrow{x} \right)-\overrightarrow{x_{0} } \right)A^{-1} \right] ^{*}=1
\Rightarrow \left(T\left(\overrightarrow{x}\right)- \overrightarrow{x_{0}}\right)A^{-1}\left(A^{-1}\right)^{*}\left(T\left(\overrightarrow{x}\right) -\overrightarrow{x_{0}}\right)^{*}=1
\Rightarrow \left( Since A^{-1}\left(A^{-1}\right)^{*}=A^{*}A=A^{-1}A=I_{2}\right)\left(T\left(\overrightarrow{x}\right)-\overrightarrow{x_{0}}\right)\left(T\left(\overrightarrow{x}\right)- \overrightarrow{x_{0}}\right)^{*}=1
\Rightarrow \left|T\left(\overrightarrow{x}\right)-\overrightarrow{x_{0}}\right|=1 if \left|\overrightarrow{x}\right|=1.
In order to avoid getting confused, it should be mentioned and cautioned that the transformation T\left(\overrightarrow{x}\right)=\overrightarrow{x_{0}}+\overrightarrow{x}A in (2.8.26) is derived from T\left(\overrightarrow{x}\right)=\overrightarrow{a_{0}}+\left(\overrightarrow{x}-\overrightarrow{a_{0}}\right), where B=A^{-1}\left[T\right] _{N}A, so that
\overrightarrow{x_{0}}=\overrightarrow{a_{0}}-\overrightarrow{a_{0}}B=\overrightarrow{a_{0}}\left(I_{2}-B\right).
This implies explicitly why 3 in (2.8.27) and (2.8.29) should hold. But this is not the case in Example 2.25 where T\left(\overrightarrow{x}\right)=\overrightarrow{x_{0}}+\overrightarrow{x}A is given, independent of the form \overrightarrow{a_{0}}+\left(\overrightarrow{x}-\overrightarrow{a_{0}}\right)B. That is why we have to recapture \overrightarrow{a_{0}} from \overrightarrow{x_{0}} in (2.8.36).

