Question 2.25: Study the affine transformation T(x^→ ) = (−2, 2√3) + x^→A, ...

Study the affine transformation

T\left(\overrightarrow{x} \right) =\left(-2, 2\sqrt{3} \right) +\overrightarrow{x}A ,   where A=\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3} }{2} \\ \\  \frac{\sqrt{3} }{2} & -\frac{1}{2} \end{bmatrix}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Although A is orthogonal, i.e. A^{*}=A^{-1} , but its determinant det A = −1. Therefore, the associated T is not a rotation.

The characteristic polynomial of A is

det\left(A-tI_{2} \right)=\left|\begin{matrix} \frac{1}{2}-t & \frac{\sqrt{3} }{2} \\ \frac{\sqrt{3} }{2} & -\frac{1}{2}-t \end{matrix} \right| =t^{2}-1,

so A has eigenvalues 1 and −1. According to 1 in (2.8.27), the associated T is a reflection.

Solve

\overrightarrow{x} \left(A-I_{2} \right)=\left(x_{1}   x_{2} \right)\begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3} }{2} \\ \\ \frac{\sqrt{3} }{2} & -\frac{3}{2} \end{bmatrix}= \left(0   0\right)

and get the associated eigenvectors \overrightarrow{v}=t\left(\sqrt{3} , 1\right), for t ∈ R and t ≠ 0. Pick up a unit vector   \overrightarrow{v_{1}}=\frac{1}{2} \left(\sqrt{3} , 1\right). On the other hand, solve

\overrightarrow{x} \left(A+I_{2} \right)=\left(x_{1}   x_{2} \right)\begin{bmatrix} \frac{3}{2} & \frac{\sqrt{3} }{2} \\ \\ \frac{\sqrt{3} }{2} & \frac{1}{2} \end{bmatrix}= \left(0   0\right)

and get the associated eigenvectors \overrightarrow{v}=t\left(-1,\sqrt{3}\right). Pick up a unit vector   \overrightarrow{v_{2}}=\frac{1}{2} \left(-1,\sqrt{3}\right). This \overrightarrow{v_{2}} is the direction of reflection. Note that \overrightarrow{v_{2}} is perpendicular to   \overrightarrow{v_{1}}, so that A is an orthogonal reflection with respect to the axis \ll \overrightarrow{v_{1}}\gg.

To see if the original affine transformation T\left(\overrightarrow{x} \right)=\overrightarrow{x_{0} }+\overrightarrow{x}A is an orthogonal reflection with respect to a certain axis, this is our problem. Suppose the axis is of the form   \overrightarrow{a_{0} }+\ll \overrightarrow{v_{1}}\gg, then

T\left(\overrightarrow{x} \right)=\overrightarrow{x_{0} }+\overrightarrow{x}A= \overrightarrow{x_{0} }+\overrightarrow{a_{0} }A+\left(\overrightarrow{x} -\overrightarrow{a_{0} }\right)A

\Rightarrow \overrightarrow{a_{0} }=\overrightarrow{x_{0} }+\overrightarrow{a_{0} }A

\Rightarrow \overrightarrow{x_{0} }=\overrightarrow{a_{0} }\left(I_{2}-A \right) which implies that \overrightarrow{x_{0} }\left(I_{2}+A \right)= \overrightarrow{0}, i.e. \overrightarrow{x_{0} }A=-\overrightarrow{x_{0} } or \overrightarrow{x_{0} } is an eigenvector of A corresponding to −1.     (2.8.36)

For the given \overrightarrow{x_{0} }=\left(-2,2\sqrt{3} \right), solve

  \overrightarrow{x} \left(I_{2}-A \right) =\overrightarrow{x}\left|\begin{matrix} \frac{1}{2} & -\frac{\sqrt{3} }{2} \\ -\frac{\sqrt{3} }{2} & \frac{3}{2} \end{matrix} \right|=\left(-2,2\sqrt{3} \right) ,  where \overrightarrow{x}= \left(x_{1}, x_{2}\right)

and the axis is  x_{1}-\sqrt{3} x_{2}=-4. Of course, any point on it, say (−4, 0), can be used as \overrightarrow{a_{0} } and the axis is the same as \overrightarrow{a_{0} }+\ll \overrightarrow{v_{1}}\gg. See Fig. 2.109.

We can reinterpret the transformation \overrightarrow{x}\rightarrow T\left(\overrightarrow{x} \right) as follows.

 \overrightarrow{x}=\left(x_{1},x_{2} \right)\overset{orthogonal  reflection}{\underset{with  axis  \ll \overrightarrow{e_{1}}\gg }{\longrightarrow}}  \overrightarrow{x}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}

=\left(x_{1},-x_{2} \right)\overset{rotation  with}{\underset{center  at   \overrightarrow{0} and  through  60^{\circ } }{\longrightarrow}}  \overrightarrow{x}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3} }{2} \\ -\frac{\sqrt{3} }{2} & \frac{1}{2} \end{bmatrix}

= \overrightarrow{x} \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3} }{2} \\ \frac{\sqrt{3} }{2} & -\frac{1}{2} \end{bmatrix}

= \overrightarrow{x} A \overset{translation}{\underset{along  \overrightarrow{x_{0}}= \left(-2,2\sqrt{3} \right) }{\longrightarrow}}\overrightarrow{x_{0}}+\overrightarrow{x}A=T\left( \overrightarrow{x}\right).

Fig. 2.110 illustrates all the steps involved.

What is the image of the unit circle x^{2}_{1}+x^{2}_{2}=1? As it might be expected beforehand, since A, as a mapping, does keep the circle invariant while the transformation \overrightarrow{x}\longrightarrow \overrightarrow{x_{0}}+\overrightarrow{x} preserves everything, the image is the circle \left| \overrightarrow{x}-\overrightarrow{x_{0}}\right|=1. Formally, we prove this as follows.

\lt \overrightarrow{x},\overrightarrow{x} \gt=\overrightarrow{x}\overrightarrow{x^{*} } =x^{2}_{1}+x^{2}_{2}=1

\Rightarrow \left(T\left(\overrightarrow{x}\right)- \overrightarrow{x_{0}}\right)A^{-1}\left[\left(T\left(\overrightarrow{x} \right)-\overrightarrow{x_{0} } \right)A^{-1} \right] ^{*}=1

\Rightarrow \left(T\left(\overrightarrow{x}\right)- \overrightarrow{x_{0}}\right)A^{-1}\left(A^{-1}\right)^{*}\left(T\left(\overrightarrow{x}\right) -\overrightarrow{x_{0}}\right)^{*}=1

\Rightarrow \left( Since A^{-1}\left(A^{-1}\right)^{*}=A^{*}A=A^{-1}A=I_{2}\right)\left(T\left(\overrightarrow{x}\right)-\overrightarrow{x_{0}}\right)\left(T\left(\overrightarrow{x}\right)- \overrightarrow{x_{0}}\right)^{*}=1

\Rightarrow \left|T\left(\overrightarrow{x}\right)-\overrightarrow{x_{0}}\right|=1  if \left|\overrightarrow{x}\right|=1.

In order to avoid getting confused, it should be mentioned and cautioned that the transformation T\left(\overrightarrow{x}\right)=\overrightarrow{x_{0}}+\overrightarrow{x}A in (2.8.26) is derived from T\left(\overrightarrow{x}\right)=\overrightarrow{a_{0}}+\left(\overrightarrow{x}-\overrightarrow{a_{0}}\right), where B=A^{-1}\left[T\right] _{N}A, so that

\overrightarrow{x_{0}}=\overrightarrow{a_{0}}-\overrightarrow{a_{0}}B=\overrightarrow{a_{0}}\left(I_{2}-B\right).

This implies explicitly why 3 in (2.8.27) and (2.8.29) should hold. But this is not the case in Example 2.25 where T\left(\overrightarrow{x}\right)=\overrightarrow{x_{0}}+\overrightarrow{x}A is given, independent of the form \overrightarrow{a_{0}}+\left(\overrightarrow{x}-\overrightarrow{a_{0}}\right)B. That is why we have to recapture \overrightarrow{a_{0}} from \overrightarrow{x_{0}} in (2.8.36).

1
2

Related Answered Questions

Question: 2.11

Verified Answer:

For \overrightarrow{x}=\left(x_{1},x_{2} \...