Question 9.8: The fluid of Example 9.1 boils while flowing through a verti...

The fluid of Example 9.1 boils while flowing through a vertical 1-in. 14 BWG tube (ID = 2.12 cm) with a mass flux of 300 kg/s · m².The tube length is 10 ft (3.048 m) and the inlet subcooling of the fluid is 23,260 J/kg. The tube is uniformly heated over its entire length, and the average internal pressure is 310 kPa. Estimate the critical heat flux using:
(a) The Palen correlation.
(b) The Katto-Ohno correlation

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From Example 9.1, the critical pressure is 2550 kPa. Hence, the reduced pressure is:

P_{r}=P / P_{c}=310 / 2550 \cong 0.12157

Equation (9.84b) is used to calculate the critical heat flux.

\hat{q}_{c}=23,660\left(D^{2} / L\right)^{0.35} P_{c}^{0.61} P_{ r }^{0.25}\left(1-P_{ r }\right)

 

=23,660\left[(0.0212)^{2} / 3.048\right]^{0.35}(2550)^{0.61}(0.12157)^{0.25}(1-0.12157)

 

\hat{q}_{c}=66,980  W / m ^{2}

Notice that this method does not take into account either the inlet subcooling or the flow rate of the fluid.
(b) From Example 9.1, the liquid and vapor densities are 567 kg/m³ and 18.09 kg/m³, respectively. Hence

\rho_{V} / \rho_{L}=18.09 / 567=0.031905

Since this value is less than 0.15, Equations (9.95) and (9.96) are used to evaluate \hat{q}_{0} and Γ. We first calculate \hat{q}_{oA} and \hat{q}_{oB} using Equations (9.86) and (9.87). Since L/D = 3.048/0.0212 = 143.8, Equation (9.91) gives the value of C_{2} as:

\begin{matrix} \hat q_{o} = \hat q_{oA} & \quad & (\hat q_{oA} \leq \hat q_{oB})\\ = Min(\hat q_{oB} , \hat q_{oC}) & \quad & (\hat q_{oA} \gt \hat q_{oB})\end{matrix}                          (9.95)

Γ = Max(Γ_{A}  , Γ_{B} )            (9.96)

\begin{matrix}G_{2} = 0.25 & & (L/D < 50)\\ = 0.25 + 0.0009 (L/D  –  50) && (50\leqslant L/D \leqslant 150) \\ = 0.34 && (L/D) > 150 )\end{matrix}                                         (9.91)

C_{2}=0.25+0.0009(143.8-50)=0.334

From Example 9.1, σ = 8.2   \times  10^{-3} N/m. Hence,

\frac{g_{c} \sigma \rho_{L}}{G^{2} L}=\frac{1.0  \times  8.2  \times  10^{-3}  \times  567}{(300)^{2}  \times  3.048}=1.6949  \times  10^{-5}

 

\hat{q}_{o A} / G \lambda=C_{2}\left(\frac{g_{C} \sigma \rho_{L}}{G^{2} L}\right)^{0.043}(L / D)^{-1}

 

=0.334\left(1.6949 \times 10^{-5}\right)^{0.043}(143.8)^{-1}

 

\hat{q}_{o A} / G \lambda=1.4482 \times 10^{-3}

 

\hat{q}_{o A}=1.4482 \times 10^{-3} \times 300 \times 272,000=118,176  W / m ^{2}

 

\hat{q}_{o B} / G \lambda=0.10\left(\rho_{V} / \rho_{L}\right)^{0.133}\left(\frac{g_{C} \sigma \rho_{L}}{G^{2} L}\right)^{1 / 3}(1+0.0031 L / D)^{-1}

 

=0.10(0.031905)^{0.133}\left(1.6949 \times 10^{-5}\right)^{1 / 3}(1+0.0031 \times 143.8)^{-1}

 

\hat{q}_{o B} / G \lambda=1.1236 \times 10^{-3}

 

\hat{q}_{o B}=1.1236 \times 10^{-3} \times 300 \times 272,000=91,688  W / m ^{2}

Since \hat{q}_{oA} > \hat{q}_{oB} we need to calculate \hat{q}_{oC} from Equation (9.88).

\hat{q}_{o C} / G \lambda=0.098\left(\rho_{V} / \rho_{L}\right)^{0.133}\left(\frac{g_{c} \sigma \rho_{L}}{G^{2} L}\right)^{0.433}(L / D)^{0.27}(1+0.0031 L / D)^{-1}

 

=0.098(0.031905)^{0.133}\left(1.6949 \times 10^{-5}\right)^{0.433}(143.8)^{0.27}(1+0.0031 \times 143.8)^{-1}

 

\hat{q}_{o C} / G \lambda=1.4091 \times 10^{-3}

 

\hat{q}_{o C}=1.4091  \times  10^{-3}  \times  300  \times  272,000=114,985  W / m ^{2}

From Equation (9.95), since \hat{q}_{oA} > \hat{q}_{oB} , we have:

\hat{q}_{o}=\operatorname{Min}\left(\hat{q}_{o B}, \hat{q}_{o C}\right)=\operatorname{Min}(91,688 ; 114,985)=91,688  W / m ^{2}

The next step is to calculate \Gamma_{A} and \Gamma_{B} from Equations (9.92) and (9.93).

\Gamma_{A}=\frac{1.043}{4 C_{2}\left(g_{c} \sigma \rho_{L} / G^{2} L\right)^{0.043}}=\frac{1.043}{4  \times  0.334\left(1.6949  \times  10^{-5}\right)^{0.043}}

 

\Gamma_{A}=1.2521

 

\Gamma_{B}=\frac{(5 / 6)(0.0124  +  D / L)}{\left(\rho_{V} / \rho_{L}\right)^{0.133}\left(g_{c} \sigma \rho_{L} / G^{2} L\right)^{1 / 3}}

 

=\frac{(5 / 6)(0.0124  +  0.0212 / 3.048)}{(0.031905)^{0.133}\left(1.6949  \times  10^{-5}\right)^{1 / 3}}

 

\Gamma_{B}=0.9929

From Equation (9.96) we have:

\Gamma=\operatorname{Max}\left(\Gamma_{A}, \Gamma_{B}\right)=\operatorname{Max}(1.2521,0.9929)=1.2521

The critical heat flux is given by Equation (9.85):

\hat{q}_{c}=\hat{q}_{o}\left(1+\Gamma \Delta H_{\text {in }} / \lambda\right)=91,688(1+1.2521 \times 23,260 / 272,000)

 

\hat{q}_{c} \cong 101,500  W / m ^{2}

This value is about 50% higher than the result obtained using Palen’s correlation.

Related Answered Questions