Question 12.7: The input to the OTA amplitude modulator in Figure 12–22 is ...
The input to the OTA amplitude modulator in Figure 12–22 is a 50 mV peak-to-peak, 1 MHz sine wave. Determine the output signal, given the modulation voltage shown is applied to the bias input.

Learn more on how we answer questions.
The maximum voltage gain is when I_{\mathrm{BIAS}}, and thus g_{\mathrm{m}} , is maximum. This occurs at the maximum peak of the modulating voltage, V_{\text {mod }} .
I_{\mathrm{BIAS}(\max )}=\frac{V_{\bmod (\max )}-(-V)-1.4 \mathrm{~V}}{R_{\mathrm{BIAS}}}=\frac{10 \mathrm{~V}-(-9 \mathrm{~V})-1.4 \mathrm{~V}}{56 \mathrm{k} \Omega}=314 \mu \mathrm{A}
From the graph in Figure 12–15 , the constant K is approximately 16 \mu \mathrm{S} / \mu \mathrm{A}.
g_m=K I_{\mathrm{BIAS}(\max )}=(16 \mu \mathrm{S} / \mu \mathrm{A})(314 \mu \mathrm{A})=5.02 \mathrm{mS}
\\A_{v(\max )}=g_m R_L=(5.02 \mathrm{mS})(10 \mathrm{k} \Omega)=50.2
\\V_{\text {out }(\max )}=A_{v(\min )} V_{\text {in }}=(50.2)(50 \mathrm{mV})=2.51 \mathrm{~V}
The minimum bias current is
I_{\mathrm{BIAS}(\min )}=\frac{V_{\bmod (\min )}-(-V)-1.4 \mathrm{~V}}{R_{\mathrm{BIAS}}}=\frac{1 \mathrm{~V}-(-9 \mathrm{~V})-1.4 \mathrm{~V}}{56 \mathrm{k} \Omega}=154 \mu \mathrm{A}
\\g_m=K I_{\mathrm{BIAS}(\min )}=(16 \mu \mathrm{S} / \mu \mathrm{A})(154 \mu \mathrm{A})=2.46 \mathrm{mS}
\\A_{v(\min )}=g_m R_L=(2.46 \mathrm{mS})(10 \mathrm{k} \Omega)=24.6
\\V_{\text {out }(\min )}=A_{v(\min )} V_{\text {in }}=(24.6)(50 \mathrm{mV})=1.23 \mathrm{~V}
The resulting output voltage is shown in Figure 12–23 .
P R A C T I C E EXERCISE
Repeat this example with the sinusoidal modulating signal replaced by a square wave with the same maximum and minimum levels and a bias resistor of 39 kΩ.
