Question 2.8: The linear operator A = [λ1 0 1 λ2] , where λ1 λ2 ≠ 0 has th...

The linear operator

A=\left[\begin{matrix} \lambda _{1} & 0 \\ 1 & \lambda _{2} \end{matrix} \right] ,   where \lambda _{1}\lambda _{2} ≠ 0

has the following properties:

(1) In case \lambda _{1}≠\lambda _{2} . Let \overrightarrow{v_{1} } = \overrightarrow{e_{1} } ,\overrightarrow{v_{2} } = (1, \lambda _{2} −\lambda _{1}).

1. \overrightarrow{v_{1} }A= \lambda _{1}\overrightarrow{v_{1} } and \overrightarrow{v_{2} }A = \lambda _{2}\overrightarrow{v_{2} }. Thus, \lambda _{1} and \lambda _{2} are eigenvalues of A with corresponding eigenvectors \overrightarrow{v_{1} } and \overrightarrow{v_{2} }.

2. \ll\overrightarrow{v_{1} }\gg and \ll\overrightarrow{v_{2} }\gg are invariant lines of A.

In fact, B = {\overrightarrow{v_{1} },\overrightarrow{v_{2} }} is a basis for R² and

\left[A\right] _{B}=PAP^{-1} =\left[\begin{matrix} \lambda _{1} & 0 \\ 0 & \lambda _{2} \end{matrix} \right] ,   where P=\left[\begin{matrix} \overrightarrow{v_{1} } \\ \overrightarrow{v_{2} } \end{matrix} \right] =\left[\begin{matrix}1 & 0 \\ 1 & \lambda _{1}-\lambda _{2} \end{matrix} \right]

is the matrix representation of A with respect to B (see Exs. <B> 4, 5 of Sec. 2.4 and Sec. 2.7.3). See Fig. 2.50.

(2) In case \lambda _{1}= \lambda _{2} = \lambda _{}. Then

\overrightarrow{e_{1} }A= λ\overrightarrow{e_{1} }

and \ll\overrightarrow{e_{1} }\gg is the only invariant subspace of A. Also

A=\left[\begin{matrix} \lambda & 0 \\ 1 & \lambda \end{matrix} \right] =\lambda I_{2}+\left[\begin{matrix} 0 & 0 \\ 1 & 0 \end{matrix} \right]=\lambda \left[\begin{matrix} 1 & 0 \\ \frac{1}{\lambda } & 1 \end{matrix} \right]

shows that A has the mapping behavior as

\begin{matrix} \overrightarrow{x}=(x_1,x_2)\underset{\text{enlargement }\lambda I_2 }{\longrightarrow} (\lambda x_1,\lambda x_2) \\\quad \quad\quad \quad\quad \quad A \searrow \quad \quad \quad\quad \quad\quad \quad \downarrow ^{\text{translation a long}(x_2,0) }\\\overrightarrow{x}A=(\lambda x_1+x_2,\lambda x_2)\quad \quad \end{matrix}

See Fig. 2.51.

A special operator of this type is

S=\left[\begin{matrix} 1 & 0 \\ a & 1 \end{matrix} \right] ,  where a ≠ 0,

which is called a shearing. S maps each point \overrightarrow{x}=\left(x_{1},x_{2} \right) to the point \left(x_{1}+\alpha x_{2},x_{2} \right) along the line passing \overrightarrow{x} and parallel to the x_{1}-axis, to the right if a > 0 with a distance a x_{2} , proportional to the x_{2}-coordinate x_{2} of \overrightarrow{x} by a fixed constant a, and to the left if a < 0 by the same manner. Therefore,

1. S keeps every point on the x_{1}-axis fixed which is the only invariant subspace of it.

2. S moves every point \left(x_{1},x_{2} \right) with x_{2}≠0 along the line parallel to the x_{1}-axis , through a distance with a constant proportion a to its distance to the x_{1}-axis , to the point \left(x_{1}+\alpha x_{2},x_{2} \right) . Thus, each line parallel to x_{1}-axis is an invariant line.

See Fig. 2.52.

Note that linear operators

\left[\begin{matrix} \lambda _{1} & 1 \\ 0 & \lambda _{2} \end{matrix}\right],   where \lambda _{1}\lambda _{2} ≠ 0; \left[\begin{matrix} 1 & a \\ 0 & 1 \end{matrix} \right] , where a ≠ 0,

can be investigated in a similar manner.

3
4
5
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Suppose ab ≠0. Consider the linear operator

f\left(\overrightarrow{x} \right) =f\left(x_{1},x_{2} \right) =\left(bx_{2},x_{1}+ax_{2} \right).

Let \overrightarrow{x} = \left(x_{1},x_{2} \right) ≠ \overrightarrow{0} . Then,

\ll\overrightarrow{x}\gg is an invariant line (subspace).

⇔There exists a constant λ ≠ 0 such that f\left(\overrightarrow{x} \right) =\lambda\overrightarrow{x} , i.e.

b x_{2}=\lambda x_{1}

x_{1}+a x_{2}=\lambda x_{2}.

Since b ≠0, x_{1}≠0 should hold. Now, put x_{2} =\frac{\lambda }{b}x_{1} into the second equation and we get, after eliminating x_{1},

\lambda ^{2}-a\lambda -b=0.

The existence of such a nonzero λ depends on the discriminant a²+4b ≥ 0.

Case 1 a² + 4b > 0. Then \lambda ^{2}-a\lambda -b=0. has two real roots

\lambda _{1} =\frac{a+\sqrt{a^{2}+4b } }{2} ,   \lambda _{2} =\frac{a-\sqrt{a^{2}+4b } }{2}

Solve f\left(\overrightarrow{x} \right) =\lambda _{i}\overrightarrow{x} ,i=1,2 , and we have the corresponding vector \overrightarrow{v_{i} } =\left(b,\lambda _{i}\right) . It is easy to see that \overrightarrow{v_{1}} and \overrightarrow{v_{2}} are linearly independent. Therefore, f has two different invariant lines \ll \overrightarrow{v_{1}}\gg and \ll \overrightarrow{v_{2}}\gg . See Fig. 2.53.

Case 2 a² + 4b = 0. λ² − aλ − b = 0 has two equal real roots

\lambda =\frac{a}{2} ,\frac{a}{2}.

Solve f\left(\overrightarrow{x} \right) =\lambda \overrightarrow{x}, and the corresponding vector is \overrightarrow{v}=(−a, 2). Then \ll \overrightarrow{v}\gg is the only invariant line. See Fig. 2.54.

Case 3 a² + 4b < 0. f does not have any invariant line. See Fig. 2.55.

Summarize these results in

6
7
8

Related Answered Questions

Question: 2.25

Verified Answer:

Although A is orthogonal, i.e. A^{*}=A^{-1}...
Question: 2.11

Verified Answer:

For \overrightarrow{x}=\left(x_{1},x_{2} \...