Question 15.S-P.1: The overhanging steel beam ABC carries a concentrated load P...

The overhanging steel beam ABC carries a concentrated load P at end C. For portion AB of the beam, (a) derive the equation of the elastic curve, (b) determine the maximum deflection, (c) evaluate y_{max} for the following data:

W14 × 68         I = 723  in^{4}       E = 29 × 10^{6}  psi

P = 50  kips        L = 15  ft = 180  in.       a = 4  ft = 48  in.

15.1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Free-Body Diagrams. Reactions: R_{A} = Pa/L↓       R_{B} = P(1 + a/L)↑ Using the free-body diagram of the portion of beam AD of length x, we find

M = -P\frac{a}{L} x                      (0 < x < L)

Differential Equation of the Elastic Curve. We use Eq. (15.4) and write

EI \frac{d^{2}y}{dx^{2}} =\frac{M(x)}{EI}
(15.4)

EI \frac{d^{2}y}{dx^{2}} = -P \frac{a}{L} x

Noting that the flexural rigidity EI is constant, we integrate twice and find

EI \frac{dy}{dx} = – \frac{1}{2} P \frac{a}{L} x^{2} + C_{1}                                       (1)

EI  y = – \frac{1}{6}  P \frac{a}{L} x^{3} + C_{1}x + C_{2}                                      (2)

Determination of Constants. For the boundary conditions shown, we have

[x = 0, y = 0]:   From Eq. (2), we find      C_{2} = 0

[x = L, y = 0]: Again using Eq. (2), we write

EI(0) = – \frac{1}{6}  P \frac{a}{L} L^{3} + C_{1}L                  C_{1} = + \frac{1}{6} PaL

a. Equation of the Elastic Curve. Substituting for C_{1}   and   C_{2} into Eqs. (1) and (2), we have

EI \frac{dy}{dx} = – \frac{1}{2} P \frac{a}{L} x^{2}+\frac{1}{6} PaL                      \frac{dy}{dx}= \frac{PaL}{6EI} \left[ 1 – 3\left( \frac{x}{L}\right)^{2} \right]                        (3)

EI  y = – \frac{1}{6} P \frac{a}{L} x^{3} + \frac{1}{6}  PaLx                             y = \frac{PaL^{2}}{6EI} \left[ \frac{x}{L} – \left( \frac{x}{L}\right)^{3}\right ]                               (4)

b. Maximum Deflection in Portion AB. The maximum deflection y_{max}  occurs at point E where the slope of the elastic curve is zero. Setting dy/dx = 0 in Eq. (3), we determine the abscissa x_{m} of point E:

0 = \frac{PaL}{6EI} \left[ 1 – 3\left( \frac{x_{m}}{L} \right)^{2} \right]                     x_{m} = \frac{L}{\sqrt{3}} = 0.577L

We substitute x_{m}/L = 0.577 into Eq. (4) and have

y_{max} = \frac{PaL^{2}}{6EI} [ (0.577) – (0.577)^{3} ]                                               y_{max} = 0.0642 \frac{PaL^{2}}{EI}

c. Evaluation of y_{max}. For the data given, the value of y_{max} is

y_{max} = 0.0642 \frac{(50  kips) (48  in.) (180  in.)^{2}}{(29  × 10^{6}  psi) (723  in^{4})}                            y_{max} = 0.238  in.

15.1a
15.1b

Related Answered Questions

Question: 15.S-P.6

Verified Answer:

Principle of Superposition. Assuming the axial for...
Question: 15.S-P.5

Verified Answer:

Principle of Superposition. The reaction R_...
Question: 15.S-P.4

Verified Answer:

Principle of Superposition. The given loading can ...
Question: 15.S-P.2

Verified Answer:

Differential Equation of the Elastic Curve. From E...
Question: 15.5

Verified Answer:

Equilibrium Equations. From the free-body diagram ...