Question 19.12: Using Standard Reduction Potentials to Calculate an Equilibr...

Using Standard Reduction Potentials to Calculate an Equilibrium Constant
Use the standard reduction potentials in Table 19.1 to calculate the equilibrium constant at 25 °C for the reaction
6 Br^{-}(aq) + Cr_{2}O^{2-}_{7} (aq) + 14 H^{+}(aq) → 3 Br_{2}(aq) + 2 Cr^{3+}(aq) + 7 H_{2}O(l)

STRATEGY
Calculate E° for the reaction from standard reduction potentials, as in Worked Example 19.7. Then use the equation log K = nE°/0.0592 V to determine the equilibrium constant.

IDENTIFY

Known Unknown
Standard reduction potentials (E°) for half-reactions Equilibrium constant (K)

 

TABLE 19.1 Standard Reduction Potentials at 25 °C
Reduction Half-Reaction E° (V)
F_{2}(g) + 2 e^{-}         →2F^{-}(aq) 2.87
H_{2}O_{2}(aq) + 2 H^{+}(aq) + 2 e^{-} → 2H_{2}O(l) 1.78
MnO^{-}_{4}(aq) + 8 H^{+}(aq) + 5 e^{-}→ Mn^{2+}(aq) + 4 H_{2}O(l) 1.51
Cl_{2}(g) + 2 e^{-} → 2Cl^{-}(aq) 1.36
Cr_{2}O^{2-}_{7}(aq) + 14 H^{+}(aq) + 6 e^{-} → 2 Cr^{3+}(aq) + 7 H_{2}O(l) 1.36
O_{2}(g) + 4 H^{+}(aq) + 4 e^{-} → 2 H_{2}O(l) 1.23
Br_{2}(aq) + 2 e^{-} → 2 Br^{-}(aq) 1.09
Ag^{+}(aq) + e^{-} → Ag(s) 0.8
Fe^{3+}(aq) + e^{-} → Fe^{2+}(aq) 0.77
O_{2}(g) + 2 H^{+}(aq) + 2 e^{-} → H_{2}O_{2}(aq) 0.7
I_{2}(s) + 2 e^{-} → 2 I^{-}(aq) 0.54
O_{2}(g) + 2 H_{2}O(l) + 4 e^{-} → 4 OH^{-}(aq) 0.4
Cu^{2+}(aq) + 2 e^{-} → Cu(s) 0.34
Sn^{4+}(aq) + 2 e^{-} → Sn^{2+}(aq) 0.15
2 H^{+}(aq) + 2 e^{-} → H_{2}(g) 0
Pb^{2+}(aq) + 2 e^{-} → Pb(s) -0.13
Ni^{2+}(aq) + 2 e^{-} → Ni(s) -0.26
Cd^{2+}(aq) + 2 e^{-} → Cd(s) -0.4
Fe^{2+}(aq) + 2 e^{-} → Fe(s) -0.45
Zn^{2+}(aq) + 2 e^{-} → Zn(s) -0.76
2 H_{2}O(l) + 2 e^{-} → H_{2}(g) + 2 OH^{-}(aq) -0.83
Al^{3+}(aq) + 3 e^{-}  → Al(s) -1.66
Mg^{2+}(aq) + 2 e^{-} → Mg(s) -2.37
Na^{+}(aq) + e^{-} → Na(s) -2.71
Li^{+}(aq) + e^{-} → Li(s) -3.04
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Find the relevant half-reactions in Table 19.1, and write them in the proper direction for the oxidation of Br^{-} and reduction of Cr_{2}O^{2-}_{7}. Before adding the half-reactions to get the overall reaction, multiply the Br^{-}/Br_{2} half-reaction by a factor of 3 so that the electrons will cancel:

\begin{array}{rc} \begin{matrix} 3 \times [2  Br^{-}(aq) \rightarrow Br_{2}(aq) + 2  e^{-}] \\ Cr_{2}O^{2-}_{7}(aq) + 14  H^{+}(aq) + 6  e^{-} \rightarrow 2  Cr^{3+}(aq) + 7  H_{2}O(l)\end{matrix} & \begin{matrix} E° = -1.09  V \\ E° = 1.36  V \\ \end{matrix} \\ \hline \begin{matrix} 6  Br^{-}(aq)+ Cr_{2}O^{2-}_{7}(aq) + 14  H^{+}(aq) → 3  Br_{2}(aq) + 2  Cr^{3+}(aq) + 7  H_{2}O(l)\\ \end{matrix} & \begin{matrix} E° = 0.27  V \\ \end{matrix}\end{array}

Note that E° for the Br^{-}/Br_{2} oxidation is the negative of the tabulated standard reduction potential (1.09 V), and remember that we don’t multiply this E° value by a factor of 3 because electrical potential is an intensive property. The E° value for the overall reaction is the sum of the E° values for the half-reactions: -1.09 V + 1.36 V = 0.27 V. To calculate the equilibrium constant, use the relation between log K and nE°, with n = 6:

\log K =\frac{nE°}{0.0592  V}=\frac{(6)(0.27  V)}{0.0592  V}= 27  K= 1×10^{27}    at  25°C

CHECK
E° is positive, so K should be greater than 1, in agreement with the solution.

Related Answered Questions