Question 19.9: Using the Nernst Equation to Calculate the Cell Potential un...

Using the Nernst Equation to Calculate the Cell Potential under Nonstandard-State Conditions
Consider a galvanic cell that uses the reaction

Zn(s) + 2 H^{+}(aq) → Zn^{2+}(aq) + H_{2}(g)

Calculate the cell potential at 25 °C when [H^{+}] = 1.0  M, [Zn^{2+}] = 0.0010  M, and P_{H_{2}} = 0.10  atm.

STRATEGY
We can calculate the standard cell potential E° from the standard reduction potentials in Table 19.1 and then use the Nernst equation to find the cell potential E under the cited conditions.

IDENTIFY

Known Unknown
Concentrations ([H^{+}] = 1.0  M, [Zn^{2+}] = 0.0010  M, P_{H_{2}} = 0.10  atm) E
Standard reduction potentials (Table 19.1)
TABLE 19.1 Standard Reduction Potentials at 25 °C
Reduction Half-Reaction E° (V)
 

 

F_{2}(g) + 2 e^{-}   →2F^{-}(aq) 2.87  

 

H_{2}O_{2}(aq) + 2 H^{+}(aq) + 2 e^{-} → 2H_{2}O(l) 1.78
MnO^{-}_{4}(aq) + 8 H^{+}(aq) + 5 e^{-}→ Mn^{2+}(aq) + 4 H_{2}O(l) 1.51
Cl_{2}(g) + 2 e^{-} → 2Cl^{-}(aq) 1.36
Cr_{2}O^{2-}_{7}(aq) + 14 H^{+}(aq) + 6 e^{-} → 2 Cr^{3+}(aq) + 7 H_{2}O(l) 1.36
O_{2}(g) + 4 H^{+}(aq) + 4 e^{-} → 2 H_{2}O(l) 1.23
Br_{2}(aq) + 2 e^{-} → 2 Br^{-}(aq) 1.09
Ag^{+}(aq) + e^{-} → Ag(s) 0.80
Fe^{3+}(aq) + e^{-} → Fe^{2+}(aq) 0.77
O_{2}(g) + 2 H^{+}(aq) + 2 e^{-} → H_{2}O_{2}(aq) 0.70
I_{2}(s) + 2 e^{-} → 2 I^{-}(aq) 0.54
O_{2}(g) + 2 H_{2}O(l) + 4 e^{-} → 4 OH^{-}(aq) 0.40
Cu^{2+}(aq) + 2 e^{-} → Cu(s) 0.34
Sn^{4+}(aq) + 2 e^{-} → Sn^{2+}(aq) 0.15
2 H^{+}(aq) + 2 e^{-} → H_{2}(g) 0
Pb^{2+}(aq) + 2 e^{-} → Pb(s) -0.13
Ni^{2+}(aq) + 2 e^{-} → Ni(s) -0.26
Cd^{2+}(aq) + 2 e^{-} → Cd(s) -0.40
Fe^{2+}(aq) + 2 e^{-} → Fe(s) -0.45
Zn^{2+}(aq) + 2 e^{-} → Zn(s) -0.76
2 H_{2}O(l) + 2 e^{-} → H_{2}(g) + 2 OH^{-}(aq) -0.83
Al^{3+}(aq) + 3 e^{-}  → Al(s) -1.66
Mg^{2+}(aq) + 2 e^{-} → Mg(s) -2.37
Na^{+}(aq) + e^{-} → Na(s) -2.71
Li^{+}(aq) + e^{-} → Li(s) -3.04
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The standard cell potential is

E° = E°_{Zn→Zn^{2+}} + E°_{H^{+}→ H_{2}} = (0.76  V) + 0  V = 0.76  V

The cell potential at 25 °C under nonstandard-state conditions is given by the Nernst equation:

E = E° -\frac{0.0592  V}{n}\log Q = E° -(\frac{0.0592  V}{n})(\log \frac{[Zn^{2+}](P_{H_{2}}) }{[H^{+}]^{2}})

where the reaction quotient contains both molar concentrations of solutes and the partial pressure of a gas (in atm). As usual, zinc has been omitted from the reaction quotient because it is a pure solid. For this reaction, 2 mol of electrons are transferred, so n = 2. Substituting into the Nernst equation the appropriate values of E°, n, [H^{+}] , [Zn^{2+}],   and   P_{H_{2}} gives

E = (0.76  V) -(\frac{0.0592  V}{2})(\log\frac{(0.0010)(0.10)}{(1.0)^{2}}) \\= (0.76  V) -(\frac{0.0592  V}{2})(-4.0) \\= 0.76  V + 0.12  V = 0.88  V  at  25 °C

CHECK
We expect that the reaction will have a greater tendency to occur under the cited conditions than under standard-state conditions because the product concentrations are lower than standard-state values. We therefore predict that the cell potential E will be greater than the standard cell potential E°, in agreement with the solution.

Related Answered Questions