Question 2.7: USING THE PERTURBATION METHOD TO FIND THE ATTENUATION CONSTA...

USING THE PERTURBATION METHOD TO FIND THE ATTENUATION CONSTANT Use the perturbation method to find the attenuation constant of a coaxial line having a lossy dielectric and lossy conductors.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Example 2.1 and (2.32)\ Z_{0}=\frac{V_{o}}{I_{o}} =\frac{E_{\rho }\ln b/a}{2\pi H_{\phi }} =\frac{\eta \ln b/a}{2\pi } =\sqrt{\frac{\mu }{\epsilon } } \frac{\ln b/a}{2\pi } , the fields of the lossless coaxial line are, for \ a\lt \rho \lt b,

\ \bar{E} =\frac{V_{o}\hat{\rho } }{\rho \ln b/a}e^{-j\beta z},

 

\ \bar{H} =\frac{V_{o}\hat{\phi } }{2\pi \rho Z_{0}}e^{-j\beta z},

where\ Z_{0}=\left(\eta /2\pi \right) \ln b/a is the characteristic impedance of the coaxial line and \ V_{o} is the voltage across the line at\ z=0.The first step is to find \ P_{o} , the power flowing on the lossless line:

\ P_{o}=\frac{1}{2} Re\int_{s}^{}{\bar{E}\times \bar{H}^{*} } \cdot d\bar{s} =\frac{\left|V_{o}\right| ^{2}}{2Z_{0}}\int_{\rho =a}^{b}{\int_{\phi =0}^{2\pi }{\frac{\rho d\rho d\phi }{2\pi \rho ^{2}\ln b/a} } } =\frac{\left|V_{o}\right|^{2} }{2Z_{0}} ,

as expected from basic circuit theory.

The loss per unit length,\ p_{l}, comes from conductor loss \ \left(P_{lc}\right)and dielectric loss\ \left(P_{ld}\right). From (1.131)\ P^{t}=\frac{R_{s}}{2} \int_{S}^{}{\left|\bar{J_{s}} \right|^{2}ds } =\frac{R_{s}}{2} \int_{S}^{}{\left|\bar{H}_{t} \right|^{2} } ds ,

the conductor loss in a 1 m length of line can be found as

\ P_{lc}=\frac{R_{s}}{2} \int_{S}^{}{\left|\bar{H}_{t} \right|^{2} } ds = \frac{R_{s}}{2}\int_{z=0}^{1}{\left\{\int_{\phi =0}^{2\pi }{\left|H_{\phi }\left(\rho =a\right) \right|^{2}a d\phi+\int_{\phi =0}^{2\pi }{\left|H_{\phi }\left(\rho =b\right) \right|^{2}b d\phi} } \right\} } dz=\frac{R_{s}\left|V_{o}\right|^{2} }{4\pi Z_{0}^{2}} \left(\frac{1}{a}+\frac{1}{b} \right)

The dielectric loss in a 1 m length of line is, from (1.92),

\ P_{l}=\frac{\sigma }{2} \int_{V}^{}{\left|\bar{E} \right|^{2}dv } +\frac{\omega }{2}\int_{V}^{}{\left(\epsilon ^{\prime \prime } \left|\bar{E} \right|^{2}+\mu ^{\prime \prime }\left|\bar{H} \right|^{2} \right)dv } ,

 

\ P_{ld}=\frac{\omega \epsilon ^{\prime \prime }}{2}\int_{V}^{}{\left|\bar{E} \right|^{2}ds } =\frac{\omega \epsilon ^{\prime \prime } }{2} \int_{\rho =a}^{b}{\int_{\phi =0}^{2\pi }{\int_{z=0}^{1}{\left|E_{\rho }\right|^{2} \rho }\;d\rho }\;d\phi }\;dz =\frac{\pi \omega \epsilon ^{\prime \prime }}{\ln b/a} \left|V_{o}\right| ^{2},

where\ \epsilon ^{\prime \prime }is the imaginary part of the complex permittivity, \ \epsilon =\epsilon ^{\prime }-j\epsilon ^{\prime \prime } . Finally, applying (2.96) \ \alpha= \frac{P_{l}\left(z\right) }{2P\left(z\right) } =\frac{P_{l}\left(z=0\right) }{2P_{o}} . gives

\ \alpha =\frac{P_{lc}+P_{ld}}{2P_{o}} =\frac{R_{s}}{4\pi Z_{0}} \left(\frac{1}{a}+\frac{1}{b} \right) +\frac{\pi \omega \epsilon ^{\prime \prime }Z_{0}}{\ln b/a} =\frac{R_{s}}{2\eta \ln b/a} \left(\frac{1}{a}+\frac{1}{b} \right)+\frac{\omega \epsilon ^{\prime \prime }\eta }{2} ,

where\ \eta =\sqrt{\mu /\epsilon ^{\prime }} . This result is seen to agree with that of Example 2.6.

Related Answered Questions