Question 10.4: Using the simplex model, show that the equilibrium constant ...

Using the simplex model, show that the equilibrium constant for the chemical reaction O_{2}+\frac{1}{2}N_{2}\rightleftarrows NO_{2} is given by

K_{p} = \kappa_{1}\Lambda^{{3}/{2}}_{N_{2}}\left(\frac{P_{\circ}}{kT}\right)^{{1}/{2}}\frac{Z_{NO_{2},int}}{Z_{O_{2},int }Z^{{1}/{2}}_{N_{2},int}}\exp\left(-\frac{\kappa_{2}}{T}\right),

where the thermal de Broglie wavelength is

\Lambda_{i} = \frac{h}{\sqrt{2\pi m_{i}kT}},

and the constants \kappa_{1} = 1.724 and \kappa_{2} = 4320 K.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eqs. (10.58) and (10.73), the equilibrium constant based on pressure is

\Delta h^{\circ}_{0} = -N_{A}\sum\limits_{i}{\nu_{i}D_{\circ i}} = N_{A}\left(D_{\circ,A_{2}}+D_{\circ,B_{2}}-2D_{\circ,AB} \right),          (10.73)

K_{p} = \prod\limits_{i}{\left(\frac{Z_{i}}{N}\right)^{\nu_{i}}_{\circ}}\exp\left(\frac{\sum_{i}\nu_{i}D_{\circ i}}{kT} \right) = \prod\limits_{i}{\left(\frac{Z_{i}}{N}\right)^{\nu_{i}}_{\circ}}\exp\left(-\frac{\Delta h^{\circ}_{0}}{RT}\right),

where, from Eq. (10.53),

\left(\frac{Z_{i}}{N}\right)_{\circ} = \frac{\left(2\pi m_{i}\right)^{{3}/{2}}}{h^{3}P_{\circ}}(kT)^{{5}/{2}}Z_{i,int},              (10.53)

\left(\frac{Z_{i}}{N}\right)_{\circ} = \left(\frac{2\pi m_{i}kT}{h^{2}}\right)^{{3}/{2}}{\left(\frac{kT}{P_{\circ}}\right)}Z_{i,int} = \left(\frac{kT}{\Lambda^{3}_{i}P_{\circ}}\right)Z_{i,int}.

Applying these expressions to O_{2}+\frac{1}{2}N_{2}\rightleftarrows NO_{2}, we obtain

K_{p} = \frac{\left(Z_{NO_{2}}/N\right)_{\circ}}{\left(Z_{O_{2}}/N\right)_{\circ}\left(Z_{N_{2}}/N\right)^{{1}/{2}}_{\circ}}\exp\left(-\frac{\Delta h^{\circ}_{0}}{RT} \right),

so that, via substitution, we may verify

K_{p} = \kappa_{1}\Lambda^{{3}/{2}}_{N_{2}}\left(\frac{P_{\circ}}{kT}\right)^{{1}/{2}}\frac{Z_{NO_{2},int}}{Z_{O_{2},int} Z^{{1}/{2}}_{N_{2},int}}\exp\left(-\frac{\kappa_{2}}{T}\right),

where

\kappa_{1} = \frac{\Lambda^{3}_{O_{2}}}{\Lambda^{3}_{NO_{2}}}

 

\kappa_{2} = \frac{\Delta h^{\circ}_{0}}{R}.

On this basis, \kappa_{1} and \kappa_{2} may be evaluated as follows:

\kappa_{1} = \left(\frac{m_{NO_{2}}}{m_{O_{2}}}\right)^{{3}/{2}} = \left(\frac{46.008}{32.000}\right)^{{3}/{2}} = 1.724

\kappa_{2} = \frac{\Delta h^{\circ}_{0}}{R} = \frac{35927_\ J/mol}{8.3145 _\ J/K · mol} = 4320 K,

where here \Delta h^{\circ}_{0} is the standard enthalpy of formation for NO_{2} at absolute zero, as obtained from the appropriate JANAF table in Appendix E (E.1, E.2, E.3, E.4, E.5, E.6, E.7, E.8, E.9, E.10, E.11, E.12). Hence, we have verified the given numerical values for \kappa_{1} and \kappa_{2}.

Related Answered Questions