Question 10.5: A (1/2) kW, 4-pole, 50 Hz, 220 V, two-value capacitor motor ...

A (1/2) kW, 4-pole, 50 Hz, 220 V, two-value capacitor motor has the following circuit model parameters:

R_{l m}=4.2 \Omega, \quad X_{l m}=11.3 \Omega

 

R_{l a}=5.16 \Omega, \quad X_{I a}=12.1 \Omega

 

X=250 \Omega, \quad a=1.05 \Omega

 

R_{2}=7.48 \Omega, \quad X_{2}=7.2 \Omega

Friction, windage and core losses = 45 W

(a) Calculate the starting torque and current if the two capacitors in parallel equal 70 \mu F.

(b) Calculate the value of the run capacitor for zero backward field when the motor is running at a slip of 0.04. What is the meaning of the associated resistance value?

(c) Calculate the motor performance for the value of the run capacitor as in part (b). Assume R_{C}=0

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)      s = 1

\bar{Z}_{f}=\bar{Z}_{b}=j 250 \|(7.48+j 7.2)

 

=10.1 \angle 45.6^{\circ}=7.07+j 7.22

 

\bar{Z}_{ l a}=(5.16+j 12.1)-j \frac{10^{6}}{314 \times 70}

 

= 5.16 – j 33.4

 

\bar{Z}_{1 a} / a^{2}=4.68-j 30.29

 

\bar{Z}_{12}=\frac{1}{2}\left(Z_{1 a} / a^{2}-\bar{Z}_{1 m}\right)

 

=\frac{1}{2}(4.68-j 30.29-4.2-j 11.3)

 

=0.24-j 20.8=20.8 \angle-89.3^{\circ}

 

\bar{V}_{m f}=\frac{220}{2}\left(1-\frac{j}{1.05}\right)=151.9 \angle-43.60^{\circ}

 

\bar{V}_{m b}=\frac{220}{2}\left(1+\frac{j}{1.05}\right)=151.9 \angle 43.6^{\circ}

 

\bar{Z}_{1 m}+\bar{Z}_{f}+\bar{Z}_{12}=\bar{Z}_{1 m}+\bar{Z}_{b}+\bar{Z}_{12}=(4.2+j 11.3)+(7.07+j 7.22)+(0.24-j 20.8)

 

=11.51-j 2.28=11.73 \angle-11.2^{\circ}

 

Substituting in Eqs (10.48a) \bar{V}_{m b}\left(\bar{Z}_{1 m}+\bar{Z}_{f}+\bar{Z}_{12}\right)+\bar{V}_{m f} \bar{Z}_{12}=0  and  (10.48b) \bar{Z}_{12}=\frac{-\bar{V}_{m b}\left(\bar{Z}_{1 m}+\bar{Z}_{f}\right)}{\bar{V}_{m f}+\bar{V}_{m b}}=\frac{-\bar{V}_{m b}\left(\bar{Z}_{1 m}+\bar{Z}_{f}\right)}{\bar{V}_{L}}

 

\bar{I}_{m f}=\frac{151.9 \angle-43.6^{\circ} \times 11.73 \angle-11.2^{\circ}+151.9 \angle 43.6^{\circ} \times 20.8 \angle-89.3^{\circ}}{(11.73)^{2} \angle-22.4^{\circ}-(20.8)^{2} \angle-178.6^{\circ}}

 

=\frac{4928 \angle-49^{\circ}}{561.3 \angle-43^{\circ}}=8.78 \angle-44.7^{\circ}=6.24-j 6.18

 

\bar{I}_{m b}=\frac{151.9 \angle 43.6^{\circ} \times 11.73 \angle-11.2^{\circ}+151.9 \angle-43.6^{\circ} \times 20.8 \angle-89.3^{\circ}}{561.3 \angle-4.3^{\circ}}

 

=\frac{-1506 \angle 64.6}{561.3 \angle-4.3^{\circ}}=-2.68 \angle 68.9^{\circ}=-0.96-j 2.5

 

n_{s}=1500 rpm , \omega_{s}=\frac{2 \pi \times 1500}{60}=157.1 rad / s

 

T_{s}=\frac{2}{157.1} \times 7.07\left\{(8.78)^{2}-(2.68)^{2}\right\}

 

= 6.31 Nm

 

\bar{I}_{m}=\bar{I}_{m f}+\bar{I}_{m b}=5.28-j 8.68

 

\bar{I}_{a}=\frac{j}{a}\left(\bar{I}_{m f}-\bar{I}_{m b}\right)=\frac{j}{1.05}(7.2-j 3.68)=3.5+j 6.86

 

\bar{I}_{L}=\bar{I}_{m}+\bar{I}_{a}=8.78-j 1.82=8.97 \angle-11.7^{\circ}

 

\bar{I}_{L}(\text { start })=8.97 A

 

(b)     s = 0.04

 

\bar{Z}_{f}=j 250 \|\left(\frac{7.48}{0.04}+j 7.2\right)

 

=j 250 \|(187+j 7.2)=147 \angle 38.2^{\circ}=115.5+j 90.9

 

From Eq. (10.55)  Torque developed =\frac{P_{h}}{s \omega_{s}}=\frac{K_{h} s f B^{2}}{s \omega_{s}} =\frac{K_{h} f B^{2}}{\omega_{s}}=\text { constant }

 

\bar{Z}_{12}=-\frac{1}{2}\left(1+\frac{j}{a}\right)\left(\bar{Z}_{1 m}+\bar{Z}_{f}\right)

 

\left.=-\frac{1}{2}\left(1+\frac{j}{1.05}\right)[(4.2+j 11.3)]+(115.5+j 90.9)\right]

 

=-108.6 \angle 84.1^{\circ}=-11.2-j 108

 

From Eq. (10.56)   P_{e}=K_{e} f_{2}^{2} B^{2}  =K_{e} s^{2} f^{2} B^{2}

 

\bar{Z}_{1 a}=a^{2}\left(2 \bar{Z}_{12}+\bar{Z}_{1 m}\right)

 

=(1.05)^{2}[2(-11.2-j 108)+(4.2+j 11.3)]=-20.1-j 225.7

 

From Eq. (10.57)   T=\frac{P_{e}}{s \omega_{s}}=\left(\frac{K_{e} f^{2} B^{2}}{\omega_{s}}\right) s

 

R_{C}-j X_{C}=(-20.1-j 225.7)-(5.16+j 12.1)

 

= – 25.3 – j238

 

X_{C}=\frac{1}{314 \times C}

 

Or                                           C=\frac{10^{6}}{314 \times 238}=13.4 \mu F

 

R_{C} being negative is unrealizable so that a completely balanced operation is not possible.

(c) s = 0.04

\bar{Z}_{f}=147 \angle 38.2^{\circ}=115.5+j 90.9

(as calculated in part (b))

\bar{Z}_{b}=j 250 \|\left(\frac{7.48}{1.96}+j 7.2\right)

 

=j 250 \|(3.82+j 7.2)

 

=7.92 \angle 63^{\circ}=3.6+j 7.06

 

\bar{Z}_{1 a}=(5.16+j 12.1)-j \frac{10^{6}}{314 \times 13.4}

 

= 5.16 – j 225.6

 

\bar{Z}_{1 a} / a^{2}=4.68-j 204.6

 

\bar{Z}_{12}=\frac{1}{2}(4.68-j 204.6-4.2-j 11.3)

 

=0.24-j 108=108 \angle-89.9^{\circ}

 

\bar{Z}_{1 m}+\bar{Z}_{f}+\bar{Z}_{12}=4.2+j 11.3+115.5+j 90.9+0.24-j 108

 

=119.9-j 5.8=120 \angle-2.8^{\circ}

 

\bar{Z}_{1 m}+\bar{Z}_{b}+\bar{Z}_{12}=4.2+j 11.3

 

3.6 + j7.06

 

0.24 – j108

 

=8.04-j 89.64=90 \angle-84.9^{\circ}

 

Substituting in Eqs (10.48a) and (10.48b)

\bar{I}_{m f}=\frac{151.9 \angle-43.6^{\circ} \times 90 \angle-84.9^{\circ}+151.9 \angle 43.6^{\circ} \times 108 \angle-89.9^{\circ}}{120 \angle-2.8^{\circ} \times 90 \angle-84.9^{\circ}-(108)^{2} \angle-179.8^{\circ}}

 

=\frac{22735 \angle-82.9^{\circ}}{16177 \angle-41.6^{\circ}}=1.405 \angle-41.3^{\circ}=1.06-j 0.927

 

\bar{I}_{m b}=\frac{151.9 \angle 43.6^{\circ} \times 120 \angle-2.8^{\circ}+151.9 \angle-43.6^{\circ} \times 108 \angle-89.9^{\circ}}{120 \angle-2.8^{\circ} \times 90 \angle-84.9^{\circ}-(108)^{2} \angle-179.8^{\circ}}

 

=\frac{2506 \angle 0.24^{\circ}}{16177 \angle-41.6^{\circ}}=0.155 \angle 41.8^{\circ}=0.116+j 0.103

 

T=\frac{2}{157.1} \times\left[(1.405)^{2} \times 115.5-(0.155)^{2} \times 3.6\right]=2.9 Nm

 

\bar{I}_{m}=\bar{I}_{m f}+\bar{I}_{m b}=1.06-j 0.927+0.12-j 0.103=1.18-j 0.824

 

\bar{I}_{a}=\frac{j}{a}\left(\bar{I}_{m f}-\bar{I}_{m b}\right)=\frac{j}{1.05}(1.06-j 0927-0.12-j 0.103)

 

=\frac{j}{1.05}(0.94-j 1.13)=1.107+j 0.895

 

\bar{I}_{L}=\bar{I}_{m}+\bar{I}_{a}=2.25-j 0.205

 

I_{L}=2.26 ; \quad p f=1 (almost unity)

 

P_{m}=2\left[(1.405)^{2} \times 115.5-(0.155)^{2} \times 3.6\right](1-0.04)=437.8 W

 

P_{\text {out }}=437.8-45=392.8 W

 

P_{\text {in }}=2.26 \times 220=497.2 W

 

\eta=\frac{392.8}{497.2}=79 \%

Related Answered Questions