Question 4.5.3: A 100 m section of an air-filled rectangular waveguide opera...

A 100 m section of an air-filled rectangular waveguide operating in the TE _{10} mode has a cross-sectional dimension of 1.071 cm x 0.5 cm. Two pulsed carriers of 21 GHz and 28 GHz are simultaneously launched at one end of the waveguide section. What is the time delay difference between the two pulses at the other end of the waveguide?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Time delay  =T=\frac{\bar{\beta}}{\omega} z

 

f_{c}=\frac{V_{0}}{2 a}=14 GHz

 

\begin{aligned}&\bar{\beta}=\beta \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}=2 \pi \sqrt{\mu E} \sqrt{f^{2}-f_{C}^{2}} \\&\text { for } f=f_{1}=21 GHz \\&\bar{\beta}=2 \pi \sqrt{\mu \varepsilon} \sqrt{\left[(21)^{2}-(14)^{2}\right] \times 10^{18}} \\&=2 \pi \sqrt{\mu \varepsilon} 15.65 \times 10^{9} \\&T_{1}=\frac{\bar{\beta}}{\omega} \times 100=2 \pi \sqrt{\mu \varepsilon} \times \frac{13.65 \times 10^{11}}{2 \pi \times 21 \times 10^{9}} \\&=0.745 \sqrt{\mu \varepsilon} \times 100\end{aligned}

for  f=f_{2}=28 GHz =

 

\begin{aligned}&2 \pi \sqrt{\mu E} \sqrt{\left[(28)^{2}-(14)^{2}\right] \times 10^{18}} \\&\bar{\beta}_{2}=2 \pi \sqrt{\mu E} 24.2 \times 10^{9} \\&\quad- \\&T=-100=0.866 \sqrt{F} \times 100\end{aligned}

Time delay difference,

\begin{aligned}T_{d}=& T_{2}-T_{1}=\sqrt{\mu E}(0.866-0.745) \times 100 \\&=\frac{1}{\cdot \times 8} \times 0.121 \times 100=0.04 \mu sec\end{aligned}

Related Answered Questions