Question 11.15: A BJT transistor amplifier shown in Fig. 11.27 has RE = RC =...

A BJT transistor amplifier shown in Fig. 11.27 has R_{E} = R_{C} = 1 kΩ , R_{S} = 600  ,  R_{L} = 2 kΩ and transistor parameters as β= 100 and r_{\pi} = 1 kΩ . Determine the values of C_{C1},  C_{C2}   and  C_{E} needed to obtain f_{L} = 50 Hz.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\omega _{1p} = 2 \pi f_{L} = 100  \pi   rad/s

We know that                          \omega _{1p}= \frac{1}{C ^{′}_{E}(R_{s}+r_{\pi})^{’}}

Therefore,            C ^{′}_{E}= \frac{1}{\omega _{1p}(R_{s}+r_{\pi})}

C ^{′}_{E}= \frac{1}{100\pi \times 1.6}= 1.99  \mu F

We know that     C_{E} =  (1 + \beta )C ^{′}_{E}

C_{E} = 101 × 1.99 × 10^{–6} = 201   \mu F

We know that      \omega _{1l}= \frac{\omega _{1p}}{10}= \frac{100\pi }{10}= 10\pi = \frac{1}{(R_{s}+R_{\pi })C_{C1}}

C_{C1}= \frac{1}{10\pi \times 1.6}= 19.9   \mu F

We choose            \omega _{12}= \frac{\omega _{1p}}{20}= \frac{100\pi }{20}= 5\pi .

Therefore,            \omega _{12}= 5\pi = \frac{1}{(R_{C}+R_{L })C_{C2}}

Hence,                  C_{C2}= \frac{1}{\omega _{12}(R_{C}+R_{L })}= \frac{1}{5\pi \times 3\times 10^{3} }= 21.23 \mu F

Since \omega_{12} is inversely proportional to C_{C2}, we can choose any value C_{C2} > 21.23   \mu F. Hence, let us choose C_{C2} = 22  \mu F.

Related Answered Questions