A BJT transistor amplifier shown in Fig. 11.27 has R_{E} = R_{C} = 1 kΩ , R_{S} = 600 , R_{L} = 2 kΩ and transistor parameters as β= 100 and r_{\pi} = 1 kΩ . Determine the values of C_{C1}, C_{C2} and C_{E} needed to obtain f_{L} = 50 Hz.
A BJT transistor amplifier shown in Fig. 11.27 has R_{E} = R_{C} = 1 kΩ , R_{S} = 600 , R_{L} = 2 kΩ and transistor parameters as β= 100 and r_{\pi} = 1 kΩ . Determine the values of C_{C1}, C_{C2} and C_{E} needed to obtain f_{L} = 50 Hz.
\omega _{1p} = 2 \pi f_{L} = 100 \pi rad/s
We know that \omega _{1p}= \frac{1}{C ^{′}_{E}(R_{s}+r_{\pi})^{’}}
Therefore, C ^{′}_{E}= \frac{1}{\omega _{1p}(R_{s}+r_{\pi})}
C ^{′}_{E}= \frac{1}{100\pi \times 1.6}= 1.99 \mu F
We know that C_{E} = (1 + \beta )C ^{′}_{E}
C_{E} = 101 × 1.99 × 10^{–6} = 201 \mu F
We know that \omega _{1l}= \frac{\omega _{1p}}{10}= \frac{100\pi }{10}= 10\pi = \frac{1}{(R_{s}+R_{\pi })C_{C1}}
C_{C1}= \frac{1}{10\pi \times 1.6}= 19.9 \mu F
We choose \omega _{12}= \frac{\omega _{1p}}{20}= \frac{100\pi }{20}= 5\pi .
Therefore, \omega _{12}= 5\pi = \frac{1}{(R_{C}+R_{L })C_{C2}}
Hence, C_{C2}= \frac{1}{\omega _{12}(R_{C}+R_{L })}= \frac{1}{5\pi \times 3\times 10^{3} }= 21.23 \mu F
Since \omega_{12} is inversely proportional to C_{C2}, we can choose any value C_{C2} > 21.23 \mu F. Hence, let us choose C_{C2} = 22 \mu F.