Question 15.21: A concrete pile of section 0.4 x 0.4 m is driven into normal...

A concrete pile of section 0.4 x 0.4 m is driven into normally consolidated clay to a depth of 10 m. The water table is at ground level. A static cone penetration test (CPT) was conducted at the site with an electric cone penetrometer. Fig. Ex. 15.21 gives a profile of q_{c} \text { and } f_{c} values with respect to depth. Determine safe loads on the pile by the following methods:

(a) α-method (b) λ-method, given: \gamma_{b}=8.5 kN / m ^{3} and (c) Schmertmann’s method. Use a factor of safety of 2.5.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) α-method

The α-method requires the undrained shear strength of the soil. Since this is not given, it has to be determined by using the relation between q_{c} \text { and } c_{u} given in Eq. (9.14).

 

q_{C}=N_{k} c_{u}+p_{0} \quad \text { or } \quad c_{u}=\frac{q_{c}-p_{o}}{N_{k}} (9.14)

 

c_{u}=\frac{q_{c}}{N_{k}} by neglecting the overburden effect,

 

where N_{k}= cone factor = 20.

 

It is necessary to determine the average \bar{c}_{u} along the pile shaft and \bar{c}_{b} at the base level of the pile. For this purpose find the correspondin f_{c} (sleeve friction) values from Fig. Ex. 15.21.

 

Average \bar{q}_{c} along the shaft, \bar{q}_{c}=\frac{1+16}{2}=8.5 kg / cm ^{2}.

 

Average of q_{c} a depth 3d above the base and d below the base of the pile (Refer to Fig. 15.17a)

 

q_{p}=\frac{15+18.5}{2}=17 kg / cm ^{2}

 

\bar{c}_{u}=\frac{8.5}{20}=0.43 kg / cm ^{2} \approx 43 kN / m ^{2}

 

c_{b}=\frac{17}{20}=0.85 kg / cm ^{2} \approx 85 kN / m ^{2}.

 

Ultimate Base Load, Q_{b}

 

FromEq. (15.39)

 

Q_{b}=9 c_{b} A_{b} (15.39)

 

Q_{b}=9 c_{b} A_{b}=9 \times 85 \times 0.40^{2}=122 kN.

 

Ultimate Friction Load, Q_{f}

 

FromEq. (15.37)

 

Q_{u}=Q_{b}+Q_{f}=c_{b} N_{c} A_{b}+\alpha \bar{c}_{u} A_{s} (15.37)

 

Q_{f}=\alpha \bar{c}_{u} A_{s}

 

From Fig. 15.15 for \bar{c}_{u}=43 kN / m ^{2}, \alpha=70

 

\begin{aligned}&Q_{f}=0.70 \times 43 \times 10 \times 4 \times 0.4=481.6 kN \text { or say } 482 kN \\&Q_{u}=122+482=604 kN \\&Q_{a}=\frac{604}{2.5}=241.6 kN \text { or say } 242 kN\end{aligned}

 

(b) λ-method

Base Load Q_{b}

In this method the base load is the same as in (a) above. That is

Q_{b}=122 k N

Friction Load

From Fig. 15.17 A = 0.25 for L = 10 m (= 32.4 ft). From Eq. 15.40

 

Q_{f}=\lambda\left(\bar{q}_{o}^{\prime}+2 \bar{c}_{u}\right) A_{s} (15.40)

 

\begin{aligned}&f_{s}=\lambda\left(\vec{q}_{o}+2 \bar{c}_{u}\right) \\&\bar{q}_{o}=\frac{1}{2} \times 10 \times 8.5=42.5 kN / m ^{2} \\&f_{s}=0.25(42.5+2 \times 43)=32 kN / m ^{2} \\&Q_{f}=f_{s} A_{s}=32 \times 10 \times 4 \times 0.4=512 kN \\&Q_{u}=122+512=634 kN \\&Q_{a}=\frac{634}{2.5}=254 kN .\end{aligned}

 

(c) Schmertmann’s Method

Base load Q_{b}

Use Eq. (15.54) for determining the representative value for q_{p}. Here, the minimum value for q_{c} is at point O on the q_{c}-profile in Fig. Ex. 15.21 which is the base level of the pile. Now q_{c 1} is the average q_{c} at the base and 0.7d below the base of the pile, that is,

 

q_{p}=\frac{\left(q_{c 1}+q_{c 2}\right) / 2+q_{c 3}}{2} (15.54)

 

q_{c 1}=\frac{q_{0}+q_{e}}{2}=\frac{16+18.5}{2}=17.25 kg / cm ^{2}

 

q_{c 2}=q_{o}=16 kg / cm ^{2}

 

q_{c 3}= The average of q_{c} within a depth &d above the base level

 

=\frac{q_{o}+q_{k}}{2}=\frac{16+11}{2}=13.5 kg / cm ^{2}

 

From Eq. (15.45), q_{p}=\frac{(17.25+16) / 2+13.5}{2}=15 kg / cm ^{2}.

 

f_{s}=0.55 c_{u} (15.45)

 

FromEq. (15.55a)

 

q_{b}(\text { pile })=q_{p} \text { (cone) } (15.55a)

 

\begin{aligned}&q_{b} \text { (pile) }=q_{p} \text { (cone) }=15 kg / cm ^{2} \approx 1500 kN / m ^{2} \\&Q_{b}=q_{b} A_{b}=1500 \times(0.4)^{2}=240 kN\end{aligned}

 

Friction Load Q_{f}

Use Eq. (15.57)

 

Q_{f}=\alpha^{\prime} \bar{f}_{c} A_{s} (15.57)

 

Q_{f}=\alpha^{\prime} \bar{f}_{c} A_{s}

 

where \alpha^{\prime}= ratio of pile to penetrometer sleeve friction.

 

From Fig. Ex. 15.21 \bar{f}_{c}=\frac{0+1.15}{2}=0.58 kg / cm ^{2} \approx 58 kN / m ^{2}.

 

From Fig. 16.18b for f_{c}=58 kN / m ^{2}, \alpha^{\prime}=0.70

 

\begin{aligned}Q_{f} &=0.70 \times 58 \times 10 \times 4 \times 0.4=650 kN \\Q_{u} &=240+650=890 kN \\Q_{a} &=\frac{890}{2.5}=356 kN\end{aligned}

 

Note: The values given in the examples are only illustrative and not factual.

15.21.
15.21..
15.21...

Related Answered Questions