It is first necessary to draw the \left(q_{p}-s\right) \text { and }(\tau-s) curves (see section 15.29). The curves can be constructed by determining the ratios of q_{p} / s \text { and } t / s from Eqs (15.77) and (15.76) respectively.
\frac{\tau}{s}=\frac{0.22 E_{s}}{2 R} (15.76)
\frac{q_{p}}{s}=\frac{3.125 E_{s}}{2 R} (15.77)
\frac{q_{p}}{s}=\frac{3.125 E}{2 R}
\frac{\tau}{s}=\frac{0.22 E}{2 R}
where R = radius or width of pile
The value of E_{s} for a driven pile may be determined from Eq. (15.78).
E_{s}=\left(36+2.2 q_{C}\right) kg / cm ^{2} (15.78)
\begin{aligned}E_{s} &=3\left(36+2.2 q_{c}\right) kg / cm ^{2} \\&=3(36+2.2 \times 50)=438 kg / cm ^{2}\end{aligned}
Now \frac{q_{p}}{s}=\frac{3.125 \times 438}{2 \times 15}=45.62 kg / cm ^{3}
\frac{\tau}{s}=\frac{0.22 \times 438}{2 \times 0.15}=3.21 kg / cm ^{3}
To construct the \left(q_{p}-s\right) \text { and }(\tau-s) curves, we have to know the maximum values of q_{p} / s \text { and } \tau.
Given q_{b}=q_{p}=50 kg / cm ^{2} – the maximum value.
From Table 15.4 \tau_{\max }=0.011 q_{c}=0.011 \times 50=0.55 kg / cm ^{2}
Now the theoretical maximum settlement s for q_{p}(\max )=50 kg / cm ^{2} is
s_{(\max )}=\frac{50}{45.62}=1.096 cm =10.96 mm
The curve \left(q_{p}-s\right) may be drawn as shown in Fig. Ex. 15.26. Similarly for \tau_{(\max )}=0.55 kg / cm ^{2}
\underset{(\max )}{s}=\frac{0.55}{3.21}=0.171 cm =1.71 mm.
Now the (\tau-s) curve can be constructed as shown in Fig. Ex. 15.26.
Calculation of pile settlement
The various steps in the calculations are
1. Divide the pile length 18 m into three equal parts of 6 m each.
2. To start with assume a base pressure q_{p}=5 kg / cm ^{2}.
3. From the \left(q_{p}-s\right) \text { curve } s_{1}=0.12 cm \text { for } q_{p}=5 kg / cm ^{2}.
4. Assume that a load Q_{1}=Q_{p}=5 \times 900=4500 kg acts axially on segment 1 .
5. Now the compression \Delta s_{1} of segment 1 is
\Delta s_{1}=\frac{Q_{1} \Delta L}{A E_{p}}=\frac{4500 \times 600}{30 \times 30 \times 21 \times 10^{4}}=0.014 cm
6. Settlement of the top of segment 1 is
s_{2}=s_{1}+\Delta s_{1}=0.12+0.014=0.134 cm.
7. Now from (\tau-s) curve Fig. Ex. 15.26, \tau=0.43 kg / cm ^{2}.
8. The pile load in segment 2 is
Q_{2}=4 \times 30 \times 600 \times 0.43+4500=30,960+4500=35,460 kg
9. Now the compression of segment 2 is
\Delta s_{2}=\frac{Q_{2} \Delta L}{A E_{p}}=\frac{35,460 \times 600}{900 \times 21 \times 10^{4}}=0.113 cm
10. Settlement of the top of segment 2 is
s_{3}=s_{2}+\Delta s_{2}=0.134+0.113=0.247 cm.
11. Now from (\tau-s) curve, Fig. Ex. 15.26 \tau=0.55 kg / cm ^{2} \text { for } s_{3}=0.247 cm. This is the maximum shear stress.
12. Now the pile load in segment 3 is
Q_{3}=4 \times 30 \times 600 \times 0.55+35,460=39,600+35,460=75,060 kg
13. The compression of segment 3 is
\Delta s _{3}=\frac{Q_{3} \Delta L}{A E_{p}}=\frac{75,060 \times 600}{900 \times 21 \times 10^{4}}=0.238 cm
14. Settlement of top of segment 3 is
s_{4}=s_{t}=s_{3}+\Delta s_{3}=0.247+0.238=0.485 cm .
15. Now from (\tau-s) \text { curve, } \tau_{\max }=0.55 kg / cm ^{2} \text { for } s \geq 0.17 cm.
16. The pile load at the top of segment 3 is
\begin{aligned}Q_{T} &=4 \times 30 \times 600 \times 0.55+75,060=39,600+75,060=114,660 kg \\& \approx 115 \text { tones (metric) }\end{aligned}
The total settlement s_{t}=0.485 cm \approx 5 mm.
Total pile load Q_{T}=115 tones.
This yields one point on the load settlement curve for the pile. Other points can be obtained in the same way by assuming different values for the base pressure q_{p} in Step 2 above. For accurate results, the pile should be divided into smaller segments.
Table 15.4 Recommended maximum skin shear stress \tau_{\max } for piles in cohesionless soils (After Verbrugge, 1981) |
\tau_{\max } kN / m ^{2} |
Pile type |
0.011 q_{c} |
Driven concrete piles |
0.009 q_{c} |
Driven steel piles |
0.005 q_{c} |
Bored concrete piles |
Limiting values |
|
\tau_{\max }=80 kN / m ^{2} for bored piles |
\tau_{\max }=120 kN / m ^{2} for driven piles |