Question 15.20: A concrete pile of size 0.4 x 0.4 m is driven to a depth of ...

A concrete pile of size 0.4 x 0.4 m is driven to a depth of 12 m into medium dense sand. The water table is close to the ground surface. Static cone penetration tests were carried out at this site by using an electric cone penetrometer. The values of qc and fc as obtained from the test have been plotted against depth and shown in Fig. Ex. 15.20. Determine the safe load on this pile with F_{s}=2.5 by Schmertmann’s method (Section 15.21).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First determine the representative cone penetration value q_{p} by using Eq. (15.54)

 

q_{p}=\frac{\left(q_{c 1}+q_{c 2}\right) / 2+q_{c 3}}{2} (15.54)

 

q_{p}=\frac{\left(q_{c 1}+q_{c 2}\right)+q_{c 3}}{2}

 

Now from Fig. Ex. 15.20 and Eq (15.56a)

 

q_{c 1}=\frac{d_{3}\left(q_{o}+q_{b}\right) / 2+d_{2}\left(q_{b}+q_{c}\right) / 2+d_{1}\left(q_{d}+q_{c}\right) / 2}{4 d} (15.56a)

 

\begin{aligned}q_{c 1} &=\frac{d_{3}\left(q_{o}+q_{b}\right) / 2+d_{2}\left(q_{b}+q_{d}\right) / 2+d_{1}\left(q_{d}+q_{c}\right) / 2}{4 d} \\&=\frac{0.7(76+85) / 2+0.3(85+71) / 2+0.6(71+80) / 2}{4 \times 0.4} \\&=78 kg / cm ^{2}\end{aligned}

 

q_{c 2}=q_{d}= the minimum value below the tip of pile within 4d depth =71 kg / cm ^{2}.

 

FromEq. (15.56b)

 

q_{c 3}=\frac{d_{4} q_{e}+d_{5}\left(q_{e}+q_{f}\right) / 2+d_{6} q_{f}+d_{7}\left(q_{g}+q_{h}\right) / 2+d_{8} q_{h}}{8 d} (15.56b)

 

\begin{aligned}q_{c 3} &=\frac{d_{4} q_{m}+d_{5}\left(q_{m}+q_{n}\right) / 2+d_{6} q_{n}+d_{7}\left(q_{g}+q_{k}\right) / 2}{8 d} \\&=\frac{0.4 \times 71+0.3(71+65) / 2+2.1 \times 65+0.4(65+60) / 2}{8 \times 0.4} \\&=66 kg / cm ^{2}=660 t / m ^{2} \text { (metric) }\end{aligned}

 

From Eq. (15.54)

 

q_{p}=\frac{(78+71) / 2+66}{2}=70 kg / cm ^{2} \approx 700 t / m ^{2} \text { (metric) }

 

Ultimate Base Load

 

Q_{b}=q_{b} A_{b}=q_{p} A_{b}=700 \times 0.4^{2}=112 t \text { (metric) }

 

Frictional Load Q_{f}

From Eq. (15.56d)

 

Q_{f}=K \frac{1}{2}\left(\bar{f}_{c} A_{s}\right)_{o-8 d}+\left(\bar{f}_{c} A_{s}\right)_{8 d-L} (15.56d)

 

Q_{f}=K \frac{1}{2}\left(\bar{f}_{c} A_{s}\right)_{0-8 d}+\left(\bar{f}_{c} A_{s}\right)_{8 d-L}

 

where K = correction factor from Fig. (15.18a) for electrical penetrometer.

For \frac{L}{d}=\frac{12}{0.4}=30, K=0.75 for concrete pile. It is now necessary to determine the average

sleeve friction \bar{f}_{c} between depths z = 0 and z – 8d, and z = 8d and z = L from the top of pile from f_{c} profile given in Fig. Ex. 15.20.

 

\begin{aligned}Q_{f} &=0.75\left[\frac{1}{2} \times 0.34 \times 10 \times 4 \times 0.4 \times 3.2+0.71 \times 10 \times 4 \times 0.4 \times 8.8\right] \\&=0.75[8.7+99.97]=81.5 t (\text { metric }) \\Q_{u} &=Q_{b}+Q_{f}=112+81.5=193.5 t \\Q_{a} &=\frac{Q_{b}+Q_{f}}{2.5}=\frac{193.5}{2.5}=77.4 t (\text { metric })=759 kN\end{aligned}
15.20
15.20.

Related Answered Questions