Question 3.17: A curved bar has a rectangular cross section 15.0 mm thick b...

A curved bar has a rectangular cross section 15.0 mm thick by 25.0 mm deep as shown in Figure 3–26.

The bar is bent into a circular arc producing an inside radius of 25.0 mm. For an applied bending moment of +400 N . m, compute the maximum tensile and compressive stresses in the bar.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Objective: Compute the maximum tensile and compressive stresses.
Given: M = +400 N . m that tends to straighten the bar. r_i = 25.0 mm.
Analysis: Apply Equations (3–28) and (3–29).

\sigma_{o}=\frac{M\left(R-r_{o}\right)}{A r_{o}\left(r_{c}-R\right)}                                (3.28)

\sigma_{i}=\frac{M\left(R-r_{i}\right)}{A r_{i}\left(r_{c}-R\right)}                                (3.29)

Results: First compute the cross-sectional area:

A=b h=(15.0 \mathrm{~mm})(25.0 \mathrm{~mm})=375.0 \mathrm{~mm}^{2}
Now compute the quantities involving radii. See Figure 3-26 for related dimensions:
\begin{aligned}&r_{o}=r_{i}+h=25.0 \mathrm{~mm}+25.0 \mathrm{~mm}=50.0 \mathrm{~mm} \\&r_{c}=r_{i}+h / 2=25.0 \mathrm{~mm}+(25.0 / 2) \mathrm{mm}=37.5 \mathrm{~mm} \\&R=A / AS F\end{aligned}
From Figure 3-25, for a rectangular cross section:
A S F=b \cdot \ln \left(r_{0}/ r_{i}\right)=(15 \mathrm{~mm})[\ln (50.0 / 25.0)]=10.3972 \mathrm{~mm}

Then, R= A/ASF =\left(375 \mathrm{~mm}^{2}\right) / 10.3972 \mathrm{~mm}=36.0674 \mathrm{~mm} Quantities needed in the stress equations include:
r_{c}-R=37.5 \mathrm{~mm}-36.0674 \mathrm{~mm}=1.4326 \mathrm{~mm}
This is the distance e as shown in Figure 3-24.
\begin{aligned}R-r_{o} &=36.0674 \mathrm{~mm}-50.0 \mathrm{~mm}=-13.9326 \mathrm{~mm} \\R-r_{i} &=36.0674 \mathrm{~mm}-25.0 \mathrm{~mm}=11.0674 \mathrm{~mm}\end{aligned}
This is the distance from the inside surface to the neutral axis. Stress at outer surface, using Equation (3-28):
\begin{aligned}&\sigma_{o}=\frac{M\left(R-r_{o}\right)}{A r_{o}\left(r_{c}-R\right)}=\frac{(400 \mathrm{~N} \cdot \mathrm{m})(-13.9326 \mathrm{~mm})[1000 \mathrm{~mm} /\mathrm{m}]}{\left(375 \mathrm{~mm}^{2}\right)(50.0 \mathrm{~mm})(1.4326 \mathrm{~mm})} \\&\sigma_{0}=-207.5 \mathrm{~N} / \mathrm{mm}^{2}=-207.5 \mathrm{MPa}\end{aligned}
This is the maximum compressive stress in the bar.
Stress at inner surface, using Equation (3-29):
\begin{aligned} &\sigma_{i}=\frac{M\left(R-r_{i}\right)}{A r_{i}\left(r_{c}-R\right)}=\frac{(400 \mathrm{~N} \cdot \mathrm{m})(11.0674 \mathrm{~mm})[1000 \mathrm{~mm} / \mathrm{m}]}{\left(375 \mathrm{~mm}^{2}\right)(25.0 \mathrm{~mm})(1.4326 \mathrm{~mm})} \\&\sigma_{\mathrm{i}}=329.6 \mathrm{~N} / \mathrm{mm}^{2}=329.6 \mathrm{MPa}\end{aligned}

This is the maximum tensile stress in the bar.
Comment: The stress distribution between the outside and the inside is similar to that shown in Figure 3–24.

3.25a
3.25b
3.24

Related Answered Questions