Question 6.59: (a) For two inductors in series as in Fig. 6.81(a), show tha...

(a) For two inductors in series as in Fig. 6.81(a), show that the current-division principle is

v1=L1L1+L2vs,v2=L2L1+L2vsv_{1}=\frac{L_{1}}{L_{1}+L_{2}} v_{s}, \quad v_{2}=\frac{L_{2}}{L_{1}+L_{2}} v_{s}

assuming that the initial conditions are zero.

(b) For two inductors in parallel as in Fig. 6.81(b), show that the current-division principle is

i1=L2L1+L2is,i2=L1L1+L2isi_{1}=\frac{L_{2}}{L_{1}+L_{2}} i_{s}, \quad \mathrm{i}_{2}=\frac{L_{1}}{L_{1}+L_{2}} i_{s}

assuming that the initial conditions are zero.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)      vs=(L1+L2)didt\mathrm{v}_{\mathrm{s}}=\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right) \frac{\mathrm{di}}{\mathrm{dt}}

didt=vsL1+L2\frac{\mathrm{di}}{\mathrm{dt}}=\frac{\mathrm{v}_{\mathrm{s}}}{\mathrm{L}_{1}+\mathrm{L}_{2}}

 

v1=L1didt,v2=L2didt\mathrm{v}_{1}=\mathrm{L}_{1} \frac{\mathrm{di}}{\mathrm{dt}}, \mathrm{v}_{2}=\mathrm{L}_{2} \frac{\mathrm{di}}{\mathrm{dt}}

 

v1=L1L1+L2vs,vL=L2L1+L2vs\mathrm{v}_{1}=\frac{\mathrm{L}_{1}}{\mathrm{L}_{1}+\mathrm{L}_{2}} \mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{L}}=\frac{\mathrm{L}_{2}}{\mathrm{L}_{1}+\mathrm{L}_{2}} \mathrm{v}_{\mathrm{s}}

 

(b)      vi=v2=L1di1dt=L2di2dt\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{2}=\mathrm{L}_{1} \frac{\mathrm{di}_{1}}{\mathrm{dt}}=\mathrm{L}_{2} \frac{\mathrm{di}_{2}}{\mathrm{dt}}

is=i1+i2\mathrm{i}_{\mathrm{s}}=\mathrm{i}_{1}+\mathrm{i}_{2}

 

disdt=di1dt+di2dt=vL1+vL2=v(L1+L2)L1L2\frac{\mathrm{di}_{\mathrm{s}}}{\mathrm{dt}}=\frac{\mathrm{di}_{1}}{\mathrm{dt}}+\frac{\mathrm{di}_{2}}{\mathrm{dt}}=\frac{\mathrm{v}}{\mathrm{L}_{1}}+\frac{\mathrm{v}}{\mathrm{L}_{2}}=\mathrm{v} \frac{\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)}{\mathrm{L}_{1} \mathrm{L}_{2}}

 

i1=1L1vdt=1L1L1L2L1+L2disdtdt=L2L1+L2is\mathrm{i}_{1}=\frac{1}{\mathrm{L}_{1}} \int \mathrm{vdt}=\frac{1}{\mathrm{L}_{1}} \int \frac{\mathrm{L}_{1} \mathrm{L}_{2}}{\mathrm{L}_{1}+\mathrm{L}_{2}} \frac{\mathrm{di}_{\mathrm{s}}}{\mathrm{dt}} \mathrm{dt}=\frac{\mathrm{L}_{2}}{\mathrm{L}_{1}+\mathrm{L}_{2}} \mathrm{i}_{\mathrm{s}}

 

i2=1L2vdt=1L2L1L2L1+L2disdtdt=L1L1+L2is\mathrm{i}_{2}=\frac{1}{\mathrm{L}_{2}} \int \mathrm{vdt}=\frac{1}{\mathrm{L}_{2}} \int \frac{\mathrm{L}_{1} \mathrm{L}_{2}}{\mathrm{L}_{1}+\mathrm{L}_{2}} \frac{\mathrm{di}_{\mathrm{s}}}{\mathrm{dt}} \mathrm{dt}=\frac{\mathrm{L}_{1}}{\mathrm{L}_{1}+\mathrm{L}_{2}} \mathrm{i}_{\mathrm{s}}

Related Answered Questions

Leq=3//5=158L_{e q}=3 / / 5=\frac{15}{8}  ...