Question 5.59: (a) Prove that the average magnetic field, over a sphere of ...

(a) Prove that the average magnetic field, over a sphere of radius R, due to steady currents inside the sphere, is

B _{ ave }=\frac{\mu_{0}}{4 \pi} \frac{2 m }{R^{3}} ,                    (5.93)

where m is the total dipole moment of the sphere. Contrast the electrostatic result, Eq. 3.105. [This is tough, so I’ll give you a start:

B _{ ave }=\frac{1}{\frac{4}{3} \pi R^{3}} \int B d \tau .

E _{ ave }=-\frac{1}{4 \pi \epsilon_{0}} \frac{ p }{R^{3}}                         (3.105)

Write B as (× A), and apply Prob. 1.61(b). Now put in Eq. 5.65, and do the surface integral first, showing that

\int \frac{1}{ᴫ} d a =\frac{4}{3} \pi r ^{\prime} .

A ( r )=\frac{\mu_{0}}{4 \pi} \int \frac{ J \left( r ^{\prime}\right)}{ᴫ} d \tau^{\prime}                      (5.65)

(see Fig. 5.65). Use Eq. 5.90, if you like.]

m =\frac{1}{2} \int( r \times J ) d \tau                   (5.90)

(b) Show that the average magnetic field due to steady currents outside the sphere is the same as the field they produce at the center.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)  B _{ ave }=\frac{1}{(3 / 4) \pi R^{3}} \int B d \tau=\frac{3}{4 \pi R^{3}} \int( \nabla \times A ) d \tau=-\frac{3}{4 \pi R^{3}} \oint A \times d a =-\frac{3}{4 \pi R^{3}} \frac{\mu_{0}}{4 \pi} \oint\left\{\int \frac{ J }{ᴫ} d \tau^{\prime}\right\} \times d a =-\frac{3 \mu_{0}}{(4 \pi)^{2} R^{3}} \int J \times\left\{\oint \frac{1}{ᴫ} d a \right\} d \tau^{\prime} .

Note that J depends on the source point r ^{\prime}, not on the field point r. To do the surface integral, choose the (x, y, z) coordinates so that  r ^{\prime} lies on the z axis (see diagram).

Then ᴫ=\sqrt{R^{2}+\left(z^{\prime}\right)^{2}-2 R z^{\prime} \cos \theta} , while d a =R^{2} \sin \theta d \theta d \phi \hat{ r } .

By symmetry, the x and y components must integrate to zero; since the z component of \hat{ r } is \cos \theta, we have

\oint \frac{1}{ᴫ} d a =\hat{ z } \int \frac{\cos \theta}{\sqrt{R^{2}+\left(z^{\prime}\right)^{2}-2 R z^{\prime} \cos \theta}} R^{2} \sin \theta d \theta d \phi=2 \pi R^{2} \hat{ z } \int_{0}^{\pi} \frac{\cos \theta \sin \theta}{\sqrt{R^{2}+\left(z^{\prime}\right)^{2}-2 R z^{\prime} \cos \theta}} d \theta .

\text { Let } u \equiv \cos \theta, \text { so } d u=-\sin \theta d \theta .

=2 \pi R^{2} \hat{ z } \int_{-1}^{1} \frac{u}{\sqrt{R^{2}+\left(z^{\prime}\right)^{2}-2 R z^{\prime} u}} d u

 

=\left.2 \pi R^{2} \hat{ z }\left\{-\frac{2\left[2\left(R^{2}+\left(z^{\prime}\right)^{2}\right)+2 R z^{\prime} u\right]}{3\left(2 R z^{\prime}\right)^{2}} \sqrt{R^{2}+\left(z^{\prime}\right)^{2}-2 R z^{\prime} u}\right\}\right|_{-1} ^{1}

 

=-\frac{2 \pi R^{2} \hat{ z }}{3\left(R z^{\prime}\right)^{2}}\left\{\left[R^{2}+\left(z^{\prime}\right)^{2}+R z^{\prime}\right] \sqrt{R^{2}+\left(z^{\prime}\right)^{2}-2 R z^{\prime}}-\left[R^{2}+\left(z^{\prime}\right)^{2}-R z^{\prime}\right] \sqrt{R^{2}+\left(z^{\prime}\right)^{2}+2 R z^{\prime}}\right\}

 

=-\left[\frac{2 \pi}{3\left(z^{\prime}\right)^{2}} \hat{ z }\right]\left\{\left[R^{2}+\left(z^{\prime}\right)^{2}+R z^{\prime}\right]\left|R-z^{\prime}\right|-\left[R^{2}+\left(z^{\prime}\right)^{2}-R z^{\prime}\right]\left(R+z^{\prime}\right)\right\}

 

=\left\{\begin{array}{l}\frac{4 \pi}{3} z^{\prime} \hat{ z }=\frac{4 \pi}{3} r ^{\prime}, \quad\left(r^{\prime}<R\right); \\\frac{4 \pi R^{3}}{3\left(z^{\prime}\right)^{2}} \hat{ z }=\frac{4 \pi}{3}\frac{R^{3}}{\left(r^{\prime}\right)^{3}} r ^{\prime},\left(r^{\prime}>R\right) .\end{array}\right\}

For now we want r^{\prime}<R, \text { so } B _{ ave }=-\frac{3 \mu_{0}}{(4 \pi)^{2} R^{3}} \frac{4 \pi}{3} \int\left( J \times r ^{\prime}\right) d \tau^{\prime}=-\frac{\mu_{0}}{4 \pi R^{3}} \int\left( J \times r ^{\prime}\right) d \tau^{\prime} . \text { Now } m =\frac{1}{2} \int( r \times J ) d \tau

(Eq. 5.90), so B _{\text {ave }}=\frac{\mu_{0}}{4 \pi} \frac{2 m }{R^{3}} . qed

(b) This time  r^{\prime}>R, \text { so } B _{ ave }=-\frac{3 \mu_{0}}{(4 \pi)^{2} R^{3}} \frac{4 \pi}{3} R^{3} \int\left( J \times \frac{ r ^{\prime}}{\left(r^{\prime}\right)^{3}}\right) d \tau^{\prime}=\frac{\mu_{0}}{4 \pi} \int \frac{ J \times \hat{ᴫ} }{ᴫ^{2}} d \tau^{\prime} , wherenow goes from the source point to the center \left( ᴫ =- r ^{\prime}\right) .

Thus  B _{\text {ave }}= B _{\text {cen }} . qed

5.59

Related Answered Questions