Question 5.62: A thin glass rod of radius R and length L carries a uniform ...

A thin glass rod of radius R and length L carries a uniform surface charge σ. It is set spinning about its axis, at an angular velocity ω. Find the magnetic field at a distance s ≫R from the axis, in the xy plane (Fig. 5.66). [Hint: treat it as a stack of magnetic dipoles.] [Answer:\mu_{0} \omega \sigma L R^{3} / 4\left[s^{2}+(L / 2)^{2}\right]^{3 / 2}]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For a dipole at the origin and a field point in the x z plane (\phi = 0) , we have

B =\frac{\mu_{0}}{4 \pi} \frac{m}{r^{3}}(2 \cos \theta \hat{ r }+\sin \theta \hat{ \theta })=\frac{\mu_{0}}{4 \pi} \frac{m}{r^{3}}[2 \cos \theta(\sin \theta \hat{ x }+\cos \theta \hat{ z })+\sin \theta(\cos \theta \hat{ x }-\sin \theta \hat{ z })]

 

=\frac{\mu_{0}}{4 \pi} \frac{m}{r^{3}}\left[3 \sin \theta \cos \theta \hat{ x }+\left(2 \cos ^{2} \theta-\sin ^{2} \theta\right) \hat{ z }\right] .

Here we have a stack of such dipoles, running from z = L/2 to z = +L/2. Put the field point at s on the x axis. The \hat{ x } components cancel (because of symmetrically placed dipoles above and below z = 0), leaving B = \frac{\mu_{0}}{4 \pi} 2 M \hat{ z } \int_{0}^{L / 2} \frac{\left(3 \cos ^{2} \theta-1\right)}{r^{3}} d z ,

where M is the dipole moment per unit length:

m=I \pi R^{2}=(\sigma v h) \pi R^{2}=\sigma \omega R \pi R^{2} h \Rightarrow M =\frac{m}{h}=\pi \sigma \omega R^{3} .

Now  \sin \theta=\frac{s}{r}, \text { so } \frac{1}{r^{3}}=\frac{\sin ^{3} \theta}{s^{3}} ; z=-s \cot \theta \Rightarrow d z=\frac{s}{\sin ^{2} \theta} d \theta . Therefore 

B =\frac{\mu_{0}}{2 \pi}\left(\pi \sigma \omega R^{3}\right) \hat{ z } \int_{\pi / 2}^{\theta_{m}}\left(3 \cos ^{2} \theta-1\right) \frac{\sin ^{3} \theta}{s^{3}} \frac{s}{\sin ^{2} \theta} d \theta=\frac{\mu_{0} \sigma \omega R^{3}}{2 s^{2}} \hat{ z } \int_{\pi / 2}^{\theta_{m}}\left(3 \cos ^{2} \theta-1\right) \sin \theta d \theta

 

=\left.\frac{\mu_{0} \sigma \omega R^{3}}{2 s^{2}} \hat{ z }\left(-\cos ^{3} \theta+\cos \theta\right)\right|_{\pi / 2} ^{\theta_{m}}=\frac{\mu_{0} \sigma \omega R^{3}}{2 s^{2}} \cos \theta_{m}\left(1-\cos ^{2} \theta_{m}\right) \hat{ z }=\frac{\mu_{0} \sigma \omega R^{3}}{2 s^{2}} \cos \theta_{m} \sin ^{2} \theta_{m} \hat{ z } .

But  \sin \theta_{m}=\frac{s}{\sqrt{s^{2}+(L / 2)^{2}}}, \text { and } \cos \theta_{m}=\frac{-(L / 2)}{\sqrt{s^{2}+(L / 2)^{2}}}, \text { so } B =-\frac{\mu_{0} \sigma \omega R^{3} L}{4\left[s^{2}+(L / 2)^{2}\right]^{3 / 2}} \hat{ z } .

5.62

Related Answered Questions