Question 12.9: An internal-expanding brake with four identical shoes is sho...

An internal-expanding brake with four identical shoes is shown in Fig. 12.19. Each hinge pin supports a pair of shoes. The actuating mechanism is designed in such a way that it produces the same force P on each of the four shoes. The face width of the friction lining is 50 mm and the maximum intensity of normal pressure is limited to 1 N/mm². The coefficient of friction is 0.30. Calculate:
(i) the actuating force P; and
(ii) the torque-absorbing capacity of the brake.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } w=50 mm \quad \mu=0.3 \quad p_{\max }=1 N / mm ^{2} .

R = 250 mm h = 200 mm
Step I Actuating force
It is assumed that the maximum normal pressure will occur between the drum and the lining on right-hand shoe of the upper half. For the righthand shoe,

\theta_{1}=15^{\circ} \quad \theta_{2}=75^{\circ} \quad \phi_{\max }=75^{\circ} .

\sin \phi_{\max .}=0.9659 \quad h=200 mm \quad c=200 mm .

where h is the distance of the pivot axis from the axis of the brake drum.
From Eq. (12.19),

M_{f}=\frac{\mu p_{\max } R w\left[4 R\left(\cos \theta_{1}-\cos \theta_{2}\right)-h\left(\cos 2 \theta_{1}-\cos 2 \theta_{2}\right)\right]}{4 \sin \phi_{\max .}}           (12.19).

M_{f}=\frac{\mu p_{\max } R w\left[4 R\left(\cos \theta_{1}-\cos \theta_{2}\right)-h\left(\cos 2 \theta_{1}-\cos 2 \theta_{2}\right)\right]}{4 \sin \phi_{\max }} .

=\frac{0.3(1)(250)(50)\left[4(250)\left(\cos 15^{\circ}-\cos 75^{\circ}\right)-200\left(\cos 30^{\circ}-\cos 150^{\circ}\right)\right]}{ 4 (0.9659)} .

= 350 091.19 N-mm
From Eq. (12.20),

M_{n}=\frac{p_{\max } R w h\left[2\left(\theta_{2}-\theta_{1}\right)-\left(\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)\right]}{4 \sin \phi_{\max }}            (12.20).

M_{n}=\frac{p_{\max } R w h\left[2\left(\theta_{2}-\theta_{1}\right)-\left(\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)\right]}{4 \sin \phi_{\max }}

=\frac{1(250)(50)(200)\left[2\left(\frac{60 \pi}{180}\right)-\left(\sin 150^{\circ}-\sin 30^{\circ}\right)\right]}{4(0.9659)} .

= 1 355 209.59 N-mm.

From Eq. (12.22),

P=\frac{M_{n}-M_{f}}{C}             (12.22).

P=\frac{M_{n}-M_{f}}{C}

=\frac{1355209.59-350091.19}{200}=5025.59 N          (i).

Step II Torque-absorbing capacity
From Eq. (12.21), the torque \left(M_{t}\right)_{R} for the right hand shoe in the upper half is given by

M_{t}=\frac{\mu R^{2} p_{\max .} w\left(\cos \theta_{1}-\cos \theta_{2}\right)}{\sin \phi_{\max }}                   (12.21).

\left(M_{t}\right)_{R}=\frac{\mu R^{2} p_{\max } w\left(\cos \theta_{1}-\cos \theta_{2}\right)}{\sin \phi_{\max }} .

=\frac{0.3(250)^{2}(1)(50)\left(\cos 15^{\circ}-\cos 75^{\circ}\right)}{0.9659} .

= 686 315.98 N-mm.

The maximum intensity of pressure for the left-hand shoe in the upper half is unknown. For identical shoes, it can be seen from the expressions of M_{n} \text { and } M_{f} that both are proportional to \left(p_{\max }\right) .
For the left-hand shoe, the maximum intensity of pressure is taken as \left(p_{\max }^{\prime}\right) . Therefore, for the left-hand shoe,

M_{f}^{\prime}=\frac{350091.19 p_{\max .}^{\prime}}{p_{\max }}=\frac{(350091.19) p_{\max .}^{\prime}}{(1)} .

=350091.19 p_{\max }^{\prime} .

M_{n}^{\prime}=\frac{1355209.59 p_{\max }^{\prime}}{p_{\max }}=\frac{(1355209.59) p_{\max }^{\prime}}{(1)} .

=1355209.59 p_{\max }^{\prime} .

Using Eq. (12.23) for the left-hand shoe in the upper half,

P=\frac{M_{n}+M_{f}}{C}                     (12.23).

P=\frac{M_{n}^{\prime}+M_{f}^{\prime}}{C} .

\text { or } \quad 5025.59=\frac{(350091.19+1355209.59) p_{\max }^{\prime}}{200} .

\therefore \quad p_{\max .}^{\prime}=0.59 N / mm ^{2} .

\left(M_{t}\right)_{L}=686315.98\left(\frac{p_{\max }^{\prime}}{p_{\max }}\right)=686315.98\left(\frac{0.59}{1}\right) .

=404926.43 \quad N – mm .

The total torque-absorbing capacity of the pair of shoes in the upper half of the brake drum is given by,

\left(M_{t}\right)_{u h}=\left(M_{t}\right)_{R}+\left(M_{t}\right)_{L}=686315.98+404926.43 .

= 1 091 242.41 N-mm
Since all four shoes are identical, the two pairs are also identical. Therefore,

M_{t}=\left(M_{t}\right)_{u h}+\left(M_{t}\right)_{f f}=2\left(M_{t}\right)_{u h}=2(1091242.41) .

= 2 182 484.82 N-mm
or,          M_{t}=2182.48 N – m          (ii).

Related Answered Questions