Holooly Plus Logo

Question 6.9: Analysis of a Cone-and-Plate Rheometer The problem concerns ...

Analysis of a Cone-and-Plate Rheometer

The problem concerns the analysis of a cone-and-plate rheometer, an instrument developed and perfected in the 1950s and 1960s by Prof. Karl Weissenberg, for measuring the viscosity of liquids, and also known as the “Weissenberg rheogoniometer.” { }^{4} A cross section of the essential features is shown in Fig. E6.9, in which the liquid sample is held by surface tension in the narrow opening between a rotating lower circular plate, of radius R, and an upper cone, making an angle of \beta with the vertical axis. The plate is rotated steadily in the \phi direction with an angular velocity \omega, causing the liquid in the gap to move in concentric circles with a velocity v_{\phi}. (In practice, the tip of the cone is slightly truncated to avoid friction with the plate.) Observe that the flow is of the Couette type.

The top of the upper shaft — which acts like a torsion bar—is clamped rigidly. However, viscous friction will twist the cone and the lower portions of the upper shaft very slightly; the amount of motion can be detected by a light arm at the extremity of which is a transducer, consisting of a small piece of steel, attached to the arm, and surrounded by a coil of wire; by monitoring the inductance of the coil, the small angle of twist can be obtained; a knowledge of the elastic properties of the shaft then enables the restraining torque T to be obtained. From the analysis given below, it is then possible to deduce the viscosity of the sample. The instrument is so sensitive that if no liquid is present, it is capable of determining the viscosity of the air in the gap!

{ }^{4} Professor Weissenberg (1893-1976) once related to the author that he (Prof. Weissenberg) was attending an instrument trade show in London. There, the rheogoniometer was being demonstrated by a young salesman who was unaware of Prof. Weissenberg’s identity. Upon inquiring how the instrument worked, the salesman replied: “I’m sorry, sir, but it’s quite complicated, and I don’t think you will be able to understand it.”

The problem is best solved using spherical coordinates, because the surfaces of the cone and plate are then described by constant values of the angle \theta, namely \beta and \pi / 2, respectively.

The "Step-by-Step Explanation" refers to a detailed and sequential breakdown of the solution or reasoning behind the answer. This comprehensive explanation walks through each step of the answer, offering you clarity and understanding.
Our explanations are based on the best information we have, but they may not always be right or fit every situation.
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Related Answered Questions