Holooly Plus Logo

Question 6.5: The Single-Screw Extruder Because molten polymers are usuall...

The Single-Screw Extruder

Because molten polymers are usually very viscous, they often need very high pressures to push them through dies. One such “pump” for achieving this is the screw extruder, shown in Fig. E6.5.1. The polymer enters the feed hopper as pellets, falls into the screw channels in the feed section, and is pushed forward by the screw, which rotates at an angular velocity \omega, clockwise as seen by an observer looking along the axis from the inlet to the exit (notice that the screw is lefthanded). The heated barrel, together with shear effects, melts the pellets, which then become fluid prior to entering the metering section.

There are three zones in the extruder:

  1. In the feed zone, the granules are transported into the barrel, where they melt just before entering the compression zone. The large constant depth of the channel in the feed zone means that there will be negligible pressure exerted on the downstream melt in the metering zone.
  2. In the compression or “transition” zone, the channel depth decreases from the feed zone to the metering zone. Therefore, the melt will gradually increase in pressure as it travels along the compression zone, reaching a maximum pressure at the beginning of the metering zone.
  3. In the metering zone, length L_{0}, the screw channel has a constant shallow depth h (with h \ll r ) and the melt in the channel should now be homogeneous or uniform. Thus, the metering zone of the screw acts like a constant-delivery pump, since the screw is rotating at a constant speed. The melt pressure uniformly increases as it passes along the metering zone. Therefore, calculations of extruder output are based on the metering zone of the screw. Extruder output calculations are relatively simple due to the uniformity of conditions existing in the metering zone of the screw.

The preliminary analysis given here neglects any heat-transfer effects in the metering section and also assumes that the polymer has a constant Newtonian viscosity \mu.

The investigation is facilitated by taking the viewpoint of a hypothetical observer located on the screw, in which case the screw surface and the flights appear to be stationary, with the barrel moving with velocity V=r \omega at a helix angle \theta to the flight axis, as shown in Fig. E6.5.2. The alternative viewpoint of an observer located on the inside surface of the barrel is not very fruitful, because not only are the flights seen as moving boundaries, but the observations would be periodically blocked as the flights passed over the observer! The width of the screw channel measured perpendicularly to the vertical sides of the flight flanks is designated W.

The "Step-by-Step Explanation" refers to a detailed and sequential breakdown of the solution or reasoning behind the answer. This comprehensive explanation walks through each step of the answer, offering you clarity and understanding.
Our explanations are based on the best information we have, but they may not always be right or fit every situation.
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Related Answered Questions