Question 5.53: Another way to fill in the “missing link” in Fig. 5.48 is to...

Another way to fill in the “missing link” in Fig. 5.48 is to look for a magnetostatic analog to Eq. 2.21. The obvious candidate would be

A ( r )=\int_{ O }^{ r }( B \times d l ) .

V( r ) \equiv-\int_{ O }^{ r } E \cdot d l                        (2.21)

(a) Test this formula for the simplest possible case—uniform B (use the origin as your reference point). Is the result consistent with Prob. 5.25? You could cure this problem by throwing in a factor of \frac{1}{2} , but the flaw in this equation runs deeper 

(b) Show that  \int( B \times d l ) is not independent of path, by calculating \oint( B \times d l ) around the rectangular loop shown in Fig. 5.63.

As far as I knoW ,^{28} the best one can do along these lines is the pair of equations

\text { (i) } V( r )=- r \cdot \int_{0}^{1} E (\lambda r ) d \lambda ,

\text { (ii) } A ( r )=- r \times \int_{0}^{1} \lambda B (\lambda r ) d \lambda .

[Equation (i) amounts to selecting a radial path for the integral in Eq. 2.21; equation (ii) constitutes a more “symmetrical” solution to Prob. 5.31.]

(c) Use (ii) to find the vector potential for uniform B.

(d) Use (ii) to find the vector potential of an infinite straight wire carrying a steady current I. Does (ii) automatically satisfy ∇ · A = 0? [Answer: \left(\mu_{0} I / 2 \pi s\right)(z \hat{ s }-s \hat{ z }) ]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)  For uniform \text { B, } \int_{0}^{ r }( B \times d l )= B \times \int_{0}^{ r } d l = B \times r \neq A =-\frac{1}{2}( B \times r ) .

(b)   B =\frac{\mu_{0} I}{2 \pi s} \hat{\phi}, \text { so } \oint B \times d l =\left(\frac{\mu_{0} I}{2 \pi a} \hat{ s }-\frac{\mu_{0} I}{2 \pi b} \hat{ s }\right) w=\frac{\mu_{0} I w}{2 \pi}\left(\frac{1}{a}-\frac{1}{b}\right) \hat{ s } \neq 0 .

(c)   A =- r \times B \int_{0}^{1} \lambda d \lambda=-\frac{1}{2}( r \times B ) .

(d)   B =\frac{\mu_{0} I}{2 \pi s} \hat{\phi} ; B (\lambda r )=\frac{\mu_{0} I}{2 \pi \lambda s} \hat{\phi} ; \quad A =-\frac{\mu_{0} I}{2 \pi s}( r \times \hat{\phi}) \int_{0}^{1} \lambda \frac{1}{\lambda} d \lambda=-\frac{\mu_{0} I}{2 \pi s}( r \times \hat{\phi}) . But r here is the vector from the origin—in cylindrical coordinates r =s \hat{ s }+z \hat{ z } . \quad \text { So } A =-\frac{\mu_{0} I}{2 \pi s}[s(\hat{ s } \times \hat{ \phi })+z(\hat{ z } \times \hat{ \phi })] , and

(\hat{ s } \times \hat{ \phi })=\hat{ z },(\hat{ z } \times \hat{ \phi })=-\hat{ s } . \text { So } \mathbf { A } =\frac{\mu_{0} I}{2 \pi s}(z \hat{ s }-s \hat{ z } .

The examples in (c) and (d) happen to be divergenceless, but this is not in general the case. For (letting L \equiv \int_{0}^{1} \lambda B (\lambda r ) d \lambda , for short) \nabla \cdot A =- \nabla \cdot( r \times L )=-[ L \cdot( \nabla \times r )- r \cdot( \nabla \times L )]= r \cdot( \nabla \times L ) , and  \nabla \times L =\int_{0}^{1} \lambda[ \nabla \times B (\lambda r )] d \lambda=\int_{0}^{1} \lambda^{2}\left[ \nabla _{\lambda} \times B (\lambda r )\right] d \lambda=\mu_{0} \int_{0}^{1} \lambda^{2} J (\lambda r ) d \lambda, \text { so } \nabla \cdot A =\mu_{0} r \cdot \int_{0}^{1} \lambda^{2} J (\lambda r ) d \lambda , and it vanishes in regions where J = 0 (which is why the examples in (c) and (d) were divergenceless). To construct an explicit counterexample, we need the field at a point where J0—say, inside a wire with uniform current.

Here \text { Ampére }’s law gives B 2 \pi s=\mu_{0} I_{ enc }=\mu_{0} J \pi s^{2} \Rightarrow B =\frac{\mu_{0} J}{2} s \hat{\phi} , so 

A =- r \times \int_{0}^{1} \lambda\left(\frac{\mu_{0} J}{2}\right) \lambda s \hat{\phi} d \lambda=-\frac{\mu_{0} J}{6} s( r \times \hat{ \phi })=\frac{\mu_{0} J s}{6}(z \hat{ s }-s \hat{ z }).

\nabla \cdot A =\frac{\mu_{0} J}{6}\left[\frac{1}{s} \frac{\partial}{\partial s}\left(s^{2} z\right)+\frac{\partial}{\partial z}\left(-s^{2}\right)\right]=\frac{\mu_{0} J}{6}\left(\frac{1}{s} 2 s z\right)=\frac{\mu_{0} J z}{3} \neq 0 .

Conclusion: (ii) does not automatically yield · A = 0.

Related Answered Questions