Question 11.18: Calculate the high 3 dB cut-off frequency fH of BJT Emitter ...

Calculate the high 3 dB cut-off frequency f_{H} of BJT Emitter follower as shown in Fig. 11.32, whose parameters are C_{b^{′}e} = 15 pF, C_{b^{′}c} = 1 pF, g_{m} = 57.14 m mho, β= 80, R_{s} = 200 Ω , r_{b^{′}e} = 1.4 kΩ .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

R_{B} = R_{1} || R_{2}= 75 × 10^{3} || 4.35 × 10^{3} = 3.66  k \Omega

We know that                f_{H}=\frac{1}{2\pi (R_{C_{b^{′}e}}C_{b^{′}e}+ R_{C_{b^{′}C}} C_{b^{′}C})}

where                              R_{C_{b^{′}e}}= r_{b^{′}e}\parallel \frac{R_{B}\parallel R_{s}+R_{L}\parallel R_{E} }{1+g_{m}(R_{L}\parallel R_{E} ) }

R_{C_{b^{′}C}}= (R_{B} || R_{s}) || [r_{b^{′}e} + (1 + \beta ) (R_{E} || R_{L})]

R_{C_{b^{′}C}} = (2.665 × 10^{3} || 200) || [1.45 × 10^{3} + (1 + 80) (330 || 55 × 10^{3})]

= 184.6 Ω

R_{C_{b^{′}e}}= 1.4\Omega \parallel \frac{(2.66 \times 10^{3}\parallel 200)+(5\times 10^{3}\parallel 330)}{1+57.14\times 10^{-3}\times (55\times 10^{3}\parallel 330)}

= 26.02 Ω

Hence, the 3 dB upper cut-off frequency is

f_{H}=\frac{1}{2\pi (R_{C_{b^{′}e}}C_{b^{′}e}+ R_{C_{b^{′}C}} C_{b^{′}C})}

=\frac{1}{2\pi (20.02\times 15\times 10^{-12} +184.6\times 1\times 10^{-12} )}

= 276.9 MHz

Related Answered Questions