Question 5.44: Calculate the magnetic force of attraction between the north...

Calculate the magnetic force of attraction between the northern and southern hemispheres of a spinning charged spherical shell (Ex. 5.11). [Answer: (\pi / 4) \mu_{0} \sigma^{2} \omega^{2} R^{4}]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eq. 5.24, F =\int\left( K \times B _{\text {ave }}\right) d a . \text { Here } K =\sigma v , v =\omega R \sin \theta \hat{\phi}, d a=R^{2} \sin \theta d \theta d \phi , and  B _{\text {ave }}=\frac{1}{2}\left( B _{\text {in }}+ B _{\text {out }}\right). From Eq. 5.70,

F _{ mag }=\int( v \times B ) \sigma d a=\int( K \times B ) d a                                  (5.24)

B =\nabla \times A =\frac{2 \mu_{0} R \omega \sigma}{3}(\cos \theta \hat{ r }-\sin \theta \hat{ \theta })=\frac{2}{3} \mu_{0} \sigma R \omega \hat{ z }=\frac{2}{3} \mu_{0} \sigma R \omega                   (5.70)

B _{\text {in }}=\frac{2}{3} \mu_{0} \sigma R \omega \hat{ z }=\frac{2}{3} \mu_{0} \sigma R \omega(\cos \theta \hat{ r }-\sin \theta \hat{ \theta })  . From Eq. 5.69,

A (r, \theta, \phi)= \begin{cases}\frac{\mu_{0} R \omega \sigma}{3} r \sin \theta \hat{\phi}, & (r \leq R), \\ \frac{\mu_{0} R^{4} \omega \sigma}{3} \frac{\sin \theta}{r^{2}} \hat{\phi}, & (r \geq R).\end{cases}                             (5.69)

B _{\text {out }}= \nabla \times A = \nabla \times\left(\frac{\mu_{0} R^{4} \omega \sigma}{3} \frac{\sin \theta}{r^{2}} \hat{\phi}\right)=\frac{\mu_{0} R^{4} \omega \sigma}{3}\left[\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\frac{\sin ^{2} \theta}{r^{2}}\right) \hat{ r }-\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{\sin \theta}{r}\right) \hat{ \theta }\right]

 

=\frac{\mu_{0} R^{4} \omega \sigma}{3 r^{3}}(2 \cos \theta \hat{ r }+\sin \theta \hat{ \theta })=\frac{\mu_{0} R \omega \sigma}{3}(2 \cos \theta \hat{ r }+\sin \theta \hat{ \theta })(\text { since } r=R) .

 

B _{\text {ave }}=\frac{\mu_{0} R \omega \sigma}{6}(4 \cos \theta \hat{ r }-\sin \theta \hat{ \theta }) .

 

K \times B _{\text {ave }}=(\sigma \omega R \sin \theta)\left(\frac{\mu_{0} R \omega \sigma}{6}\right)[\hat{\phi} \times(4 \cos \theta \hat{ r }-\sin \theta \hat{ \theta })]=\frac{\mu_{0}}{6}(\sigma \omega R)^{2}(4 \cos \theta \hat{ \theta }+\sin \theta \hat{ r }) \sin \theta .

 

Picking out the z component of \hat{ \theta }(\text { namely, }-\sin \theta) \text { and of } \hat{ r } \text { (namely, } \cos \theta) , we have \left( K \times B _{\text {ave }}\right)_{z}=-\frac{\mu_{0}}{2}(\sigma \omega R)^{2} \sin ^{2} \theta \cos \theta , so

F_{z}=-\frac{\mu_{0}}{2}(\sigma \omega R)^{2} R^{2} \int \sin ^{3} \theta \cos \theta d \theta d \phi=-\left.\frac{\mu_{0}}{2}\left(\sigma \omega R^{2}\right)^{2} 2 \pi\left(\frac{\sin ^{4} \theta}{4}\right)\right|_{0} ^{\pi / 2}, \text { or } \quad F =-\frac{\mu_{0} \pi}{4}\left(\sigma \omega R^{2}\right)^{2} \hat{ z } .

Related Answered Questions