Question 3.6: Compute the maximum torsional shear stress in a shaft having...

Compute the maximum torsional shear stress in a shaft having a diameter of 10 mm when it carries a torque of 4.10 N . m.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Objective: Compute the torsional shear stress in the shaft.
Given: \quad Torque =T=4.10 Nm;=T=4.10 \mathrm{~N} \cdot \mathrm{m} ; shaft diameter =D=10 mm=D=10 \mathrm{~mm}.
c=c= radius of the shaft =D/2=5.0 mm=D / 2=5.0 \mathrm{~mm}
Analysiçs: Use Equation (3-7) to compute the torsional shear stress: τmax=Tc/J.J\tau_{\max }=T c / J . J is the polar moment of inertia for the shaft: J=πD4/32J=\pi D^{4} / 32 (see Appendix 1 ).

APPENDIX 1 Properties of Areas
A= area r= radius of gyration =I/AI=moment of inertia J= polar moment of inertia S= section modulus Zp= polar section modulus \begin{array}{ll}A=\text { area } & r=\text { radius of gyration }=\sqrt{I / A} \\I=\text {moment of inertia } & J=\text { polar moment of inertia } \\S=\text { section modulus } &Z_{p}=\text { polar section modulus }\end{array}
A=πD2/4r=D/4I=πD4/64J=πD4/32S=πD3/32Zp=πD3/16\begin{array}{ll}A=\pi D^{2} / 4 & r=D / 4 \\I=\pi D^{4} / 64 & J=\pi D^{4} / 32 \\S=\pi D^{3} / 32 & Z_{p}=\pi D^{3} / 16\end{array}
A=π(D2d2)/4r=(D2+d2)4I=π(D4d4)/64J=π(D4d4)/32S=π(D4d4)/32DZp=π(D4d4)/16D\begin{array}{ll}A=\pi\left(D^{2}-d^{2}\right) / 4 & r=\frac{\sqrt{\left(D^{2}+d^{2}\right)}}{4} \\I=\pi\left(D^{4}-d^{4}\right) / 64 & J=\pi\left(D^{4}-d^{4}\right) / 32 \\S=\pi\left(D^{4}-d^{4}\right) / 32 D & Z_{p}=\pi\left(D^{4}-d^{4}\right) / 16 D\end{array}
A=H2r=H/12I=H4/12S=H3/6\begin{aligned}&A=H^{2} \quad\quad\quad r=H / \sqrt{12} \\&I=H^{4} / 12 \\&S=H^{3} / 6\end{aligned}
A=BHrx=H/12Ix=BH3/12ry=B/12Iy=HB3/12Sx=BH2/6Sy=HB2/6\begin{array}{ll}A=B H & r_{x}=H / \sqrt{12} \\I_{x}=B H^{3} / 12 & r_{y}=B / \sqrt{12} \\I_{y}=H B^{3} / 12 & \\S_{x}=B H^{2} / 6 & \\S_{y}=H B^{2} / 6 &\end{array}
A=BHbhIx=BH3bh312Sx=BH3bh36Hrx=0.289BH3bh3BHbhIy=HB3hb312Sy=HB3hb36Bry=0.289HB3hb3HBhb\begin{aligned}&A=B H-b h \\&I_{x}=\frac{B H^{3}-b h^{3}}{12} \quad S_{x}=\frac{B H^{3}-b h^{3}}{6 H}\quad r_{x}=0.289 \sqrt{\frac{B H^{3}-b h^{3}}{B H-b h}} \\&I_{y}=\frac{H B^{3}-h b^{3}}{12} \quad S_{y}=\frac{H B^{3}-h b^{3}}{6 B} \quad r_{y}=0.289 \sqrt{\frac{H B^{3}-h b^{3}}{H B-h b}}\end{aligned}
A=BH/2r=H/18I=BH3/36S=BH2/24\begin{aligned}&A=B H / 2 \quad\quad\quad r=H / \sqrt{18} \\&I=B H^{3} / 36 \\&S=B H^{2} /24\end{aligned}
A=πD2/8r=0.132DI=0.007D4S=0.024D3\begin{aligned}&A=\pi D^{2} / 8 \quad\quad\quad r=0.132 D \\&I=0.007 D^{4} \\&S=0.024D^{3}\end{aligned}
A=0.866D2r=0.264DI=0.06D4S=0.12D3\begin{aligned}&A=0.866 D^{2} \quad\quad\quad r=0.264 D \\&I=0.06 D^{4} \\&S=0.12 D^{3}\end{aligned}
A=H(a+B)/2y=H(a+2B)3(a+B)S=H2(a2+4aB+B2)12(a+2B)Ix=H3(a2+4aB+B2)36(a+B)r=H2(a2+4aB+B2)18(a+B)2y= outer surface of section  Maximum distance from x-axis to \begin{aligned}A &=H(a+B) / 2 \\y &=\frac{H(a+2 B)}{3(a+B)} \quad\quad\quad\quad\quad\quad S=\frac{H^{2}\left(a^{2}+4 a B+B^{2}\right)}{12(a+2 B)} \\I_{x} &=\frac{H^{3}\left(a^{2}+4a B+B^{2}\right)}{36(a+B)} \quad\quad r=\frac{H^{2}\left(a^{2}+4 a B+B^{2}\right)}{18(a+B)^{2}} \\y &=\underset{\text { Maximum distance from } x \text {-axis to }}{\text { outer surface of section }}\end{aligned}
A=πbhI=πh3b4S=πh2b4r=h/2\begin{aligned}&A=\pi b h \\&I=\frac{\pi h^{3} b}{4} \\&S=\frac{\pi h^{2} b}{4} \\&r=h / 2\end{aligned}

Results
J=πD4/32=[(π)(10 mm)4]/32=982 mm4τmax=(4.10 Nm)(5.0 mm)103 mm982 mm4=20.9 N/mm2=20.9MPa\begin{aligned}&J=\pi D^{4} / 32=\left[(\pi)(10 \mathrm{~mm})^{4}\right] / 32=982 \mathrm{~mm}^{4} \\&\tau_{\max }=\frac{(4.10 \mathrm{~N}\cdot \mathrm{m})(5.0 \mathrm{~mm}) 10^{3} \mathrm{~mm}}{982 \mathrm{~mm}^{4}}=20.9 \mathrm{~N} / \mathrm{mm}^{2}=20.9 \mathrm{MPa}\end{aligned}
Comment The maximum torsional shear stress occurs at the outside surface of the shaft around its entire circumference.

Related Answered Questions