Compute the maximum torsional shear stress in a shaft having a diameter of 10 mm when it carries a torque of 4.10 N . m.
Compute the maximum torsional shear stress in a shaft having a diameter of 10 mm when it carries a torque of 4.10 N . m.
Objective: Compute the torsional shear stress in the shaft.
Given: Torque =T=4.10 N⋅m; shaft diameter =D=10 mm.
c= radius of the shaft =D/2=5.0 mm
Analysiçs: Use Equation (3-7) to compute the torsional shear stress: τmax=Tc/J.J is the polar moment of inertia for the shaft: J=πD4/32 (see Appendix 1 ).
APPENDIX 1 Properties of Areas | |
A= area I=moment of inertia S= section modulus r= radius of gyration =I/AJ= polar moment of inertia Zp= polar section modulus | |
![]() |
A=πD2/4I=πD4/64S=πD3/32r=D/4J=πD4/32Zp=πD3/16 |
![]() |
A=π(D2−d2)/4I=π(D4−d4)/64S=π(D4−d4)/32Dr=4(D2+d2)J=π(D4−d4)/32Zp=π(D4−d4)/16D |
![]() |
A=H2r=H/12I=H4/12S=H3/6 |
![]() |
A=BHIx=BH3/12Iy=HB3/12Sx=BH2/6Sy=HB2/6rx=H/12ry=B/12 |
![]() |
A=BH−bhIx=12BH3−bh3Sx=6HBH3−bh3rx=0.289BH−bhBH3−bh3Iy=12HB3−hb3Sy=6BHB3−hb3ry=0.289HB−hbHB3−hb3 |
![]() |
A=BH/2r=H/18I=BH3/36S=BH2/24 |
![]() |
A=πD2/8r=0.132DI=0.007D4S=0.024D3 |
![]() |
A=0.866D2r=0.264DI=0.06D4S=0.12D3 |
![]() |
AyIxy=H(a+B)/2=3(a+B)H(a+2B)S=12(a+2B)H2(a2+4aB+B2)=36(a+B)H3(a2+4aB+B2)r=18(a+B)2H2(a2+4aB+B2)= Maximum distance from x-axis to outer surface of section |
![]() |
A=πbhI=4πh3bS=4πh2br=h/2 |
Results
J=πD4/32=[(π)(10 mm)4]/32=982 mm4τmax=982 mm4(4.10 N⋅m)(5.0 mm)103 mm=20.9 N/mm2=20.9MPa
Comment The maximum torsional shear stress occurs at the outside surface of the shaft around its entire circumference.