Question 8.3: Compute the values for the geometrical features listed in Ta...

Compute the values for the geometrical features listed in Table 8–8 for a pair of straight bevel gears having a diametral pitch of 8, a 20° pressure angle, 16 teeth in the pinion, and 48 teeth in the gear. Specify a suitable face width. The shafts are at 90°.

TABLE 8–8 Geometrical Features of Straight Bevel Gears
Given Diametral pitch = P_d = N_P/d = N_G/D or m = d/N_P = D/N_G
where N_P = number of teeth in pinion
N_G = number of teeth in gear
Dimension Formula
Gear ratio m_{G}=N_{G} / N_{P}
Pitch diameters:
Pinion d=N_{P}/ P_{d} \text { or } d=m N_{P}
Gear D=N_{G} P_{d} \text { or } D=m N_{G}
Pitch cone angles:
Pinion \gamma=\tan ^{-1}\left(N_{P} / N_{G}\right) \quad \text { (lowercase Greek gamma) }
Gear \Gamma=\tan ^{-1}\left(N_{G} / N_{p}\right) \quad \text { (uppercase Greek gamma) }
Outer cone distance A_{o}=0.5 D / \sin (\Gamma)
Face width must be specified: F=
Nominal face width F_{\text {nom }}=0.30 A_{o}
Maximum face width F_{\max }=\mathrm{A}_{0} / 3 \text { or } F_{\max }=10 / P_{d} \text { or } \mathrm{m} / 2.54 \text { (whichever is less) }
Mean cone distance A_{m}=A_{o}-0.5 F
(Note: A_m is defined for the gear, also called A_{mG}.)
Mean circular pitch p_{m}=\left(\pi / P_{d}\right)\left(A_{m} / A_{0}\right) \quad \text { or } \quad \pi m\left(A_{m} / A_{o}\right)
Mean working depth h=\left(2.00 / P_{d}\right)\left(A_{m} / A_{o}\right) \text { or } 2.00 \mathrm{~m}\left(A_{m} / A_{o}\right)
Clearance c=0.125 h
Mean whole depth h_{m}=h+c
Mean addendum factor c_{1}=0.210+0.290 /\left(m_{G}\right)^{2}
Gear mean addendum a_{G}=c_{1} h
Pinion mean addendum a_{P}=h-a_{G}
Gear mean dedendum b_{G}=h_{m}-a_{G}
Pinion mean dedendum b_{p}=h_{m}-a_{p}
Gear dedendum angle \delta_{G}=\tan ^{-1}\left(b_{G} / A_{m G}\right)
Pinion dedendum angle \delta_{P}=\tan ^{-1}\left(b_{P} / A_{m G}\right)
Gear outer addendum a_{o G}=a_{G}+0.5 F \tan \delta_{P}
Pinion outer addendum a_{o P}=a p+0.5 F \tan \delta_{G}
Gear outside diameter D_{o}=D+2 a_{o G} \cos \Gamma
Pinion outside diameter d_{o}=d+2 a_{o P} \cos \gamma
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given P_d = 8; N_p = 16; N_G = 48.
Computed Values Gear Ratio
m_G = N_G/N_P = 48/16 = 3.000
Pitch Diameter
For the pinion,
d = N_P/P_d = 16/8 = 2.000 in
For the gear,
D = N_G/P_d = 48/8 = 6.000 in
Pitch Cone Angles
For the pinion,

\gamma=\tan ^{-1}\left(N_{P} / N_{G}\right)=\tan ^{-1}(16 / 48)=18.43^{\circ}
For the gear,
\Gamma=\tan ^{-1}\left(N_{G} / N_{P}\right)=\tan ^{-1}(48 / 16)=71.57^{\circ}
Outer Cone Distance
A_{o}=0.5 \mathrm{D} / \sin (\Gamma)=0.5(6.00 \mathrm{in}) / \sin \left(71.57^{\circ}\right)=3.162 \mathrm{in}
Face Width
The face width must be specified based on the following guidelines:
Nominal face width:
F_{\text {nom }}=0.30 A_{o}=0.30(3.162 \text { in })=0.949 \text { in }
Maximum face width:
F_{\max }=A_{0}/ 3=(3.162 \mathrm{in}) / 3=1.054 \text { in }
or
F_{\max }=10 / P_{d}=10 / 8=1.25 \text { in }
Therefore the face width should be in the range from 0.949 in to 1.054 in. Let’s specify F=1.000 in.

Mean Cone Distance
A_m = A_{mG} = A_o – 0.5F = 3.162 in – 0.5(1.00 in) = 2.662 in
Ratio A_m/A_o = 2.662/3.162 = 0.842 (This ratio occurs in several following calculations.)
Mean Circular Pitch
p_m = (π/P_d)(A_m/A_o) = (π/8)(0.842) = 0.331 in
Mean Working Depth
h = (2.00/P_d)(A_m/A_o) = (2.00/8)(0.842) = 0.210 in
Clearance
c = 0.125h = 0.125(0.210 in) = 0.026 in
Mean Whole Depth
h_m = h + c = 0.210 in + 0.026 in = 0.236 in
Mean Addendum Factor
c_1 = 0.210 + 0.290/(m_G)^2 = 0.210 + 0.290/(3.00)2 = 0.242
Gear Mean Addendum
a_G = c_1h = (0.242)(0.210 in) = 0.051 in
Pinion Mean Addendum
a_p = h – a_G = 0.210 in – 0.051 in = 0.159 in

Gear Mean Dedendum
b_G = h_m – a_G = 0.236 in – 0.051 in = 0.185 in
Pinion Mean Dedendum
b_P = h_m – a_P = 0.236 in – 0.159 in = 0.077 in
Gear Dedendum Angle

δ _G = tan^{-1}(b_G/A_{mG}) = tan^{-1}(0.185/2.662) = 3.975°

Pinion Dedendum Angle
δ_P = tan^{-1}(b_P/A_{mG}) = tan^{-1}(0.077/2.662) = 1.657°
Gear Outer Addendum
a_oG = a_G + 0.5F tan δ_P
a_{oG} = (0.051 in) + (0.5)(1.00 in) tan(1.657°) = 0.0655 in
Pinion Outer Addendum

a_oP = a_P + 0.5F tan δ_G
a_oP = (0.159 in) + (0.5)(1.00 in) tan(3.975°) = 0.1937 in
Gear Outside Diameter
D_o = D + 2a_{oG} cosΓ
D_o = 6.000 in + 2(0.0655 in) cos (71.57°) = 6.041 in

Pinion Outside Diameter
d_o = d + 2a_{oP} cos γ
d_o = 2.000 in + 2(0.1937 in) cos (18.43°) = 2.368 in

Related Answered Questions