Compute the values for the geometrical features listed in Table 8–8 for a pair of straight bevel gears having a diametral pitch of 8, a 20° pressure angle, 16 teeth in the pinion, and 48 teeth in the gear. Specify a suitable face width. The shafts are at 90°.
TABLE 8–8 Geometrical Features of Straight Bevel Gears | |
Given Diametral pitch = P_d = N_P/d = N_G/D or m = d/N_P = D/N_G where N_P = number of teeth in pinion N_G = number of teeth in gear |
|
Dimension | Formula |
Gear ratio | m_{G}=N_{G} / N_{P} |
Pitch diameters: | |
Pinion | d=N_{P}/ P_{d} \text { or } d=m N_{P} |
Gear | D=N_{G} P_{d} \text { or } D=m N_{G} |
Pitch cone angles: | |
Pinion | \gamma=\tan ^{-1}\left(N_{P} / N_{G}\right) \quad \text { (lowercase Greek gamma) } |
Gear | \Gamma=\tan ^{-1}\left(N_{G} / N_{p}\right) \quad \text { (uppercase Greek gamma) } |
Outer cone distance | A_{o}=0.5 D / \sin (\Gamma) |
Face width must be specified: | F= |
Nominal face width | F_{\text {nom }}=0.30 A_{o} |
Maximum face width | F_{\max }=\mathrm{A}_{0} / 3 \text { or } F_{\max }=10 / P_{d} \text { or } \mathrm{m} / 2.54 \text { (whichever is less) } |
Mean cone distance | A_{m}=A_{o}-0.5 F |
(Note: A_m is defined for the gear, also called A_{mG}.) | |
Mean circular pitch | p_{m}=\left(\pi / P_{d}\right)\left(A_{m} / A_{0}\right) \quad \text { or } \quad \pi m\left(A_{m} / A_{o}\right) |
Mean working depth | h=\left(2.00 / P_{d}\right)\left(A_{m} / A_{o}\right) \text { or } 2.00 \mathrm{~m}\left(A_{m} / A_{o}\right) |
Clearance | c=0.125 h |
Mean whole depth | h_{m}=h+c |
Mean addendum factor | c_{1}=0.210+0.290 /\left(m_{G}\right)^{2} |
Gear mean addendum | a_{G}=c_{1} h |
Pinion mean addendum | a_{P}=h-a_{G} |
Gear mean dedendum | b_{G}=h_{m}-a_{G} |
Pinion mean dedendum | b_{p}=h_{m}-a_{p} |
Gear dedendum angle | \delta_{G}=\tan ^{-1}\left(b_{G} / A_{m G}\right) |
Pinion dedendum angle | \delta_{P}=\tan ^{-1}\left(b_{P} / A_{m G}\right) |
Gear outer addendum | a_{o G}=a_{G}+0.5 F \tan \delta_{P} |
Pinion outer addendum | a_{o P}=a p+0.5 F \tan \delta_{G} |
Gear outside diameter | D_{o}=D+2 a_{o G} \cos \Gamma |
Pinion outside diameter | d_{o}=d+2 a_{o P} \cos \gamma |