Question 3.4: Determine the number (#/cm3) of quantum states in silicon be...

Determine the number \left(\# / \mathrm{cm}^{3}\right) of quantum states in silicon between E_{c} and E_{c}+ k T at T=300 \mathrm{~K}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using Equation (3.72), we can write

\begin{aligned} g_{c}(E)=\frac{4 \pi\left(2 m_{n}^{*}\right)^{3 / 2}}{h^{3}} \sqrt{E-E_{c}} & \\ \end{aligned}     (3.72)

\begin{aligned}N &=\int_{E_{c}}^{E_{c}+k T} \frac{4 \pi\left(2 m_{n}^{*}\right)^{3 / 2}}{h^{3}} \sqrt{E-E_{c}} \cdot d E \\ &=\left.\frac{4 \pi\left(2 m_{n}^{*}\right)^{3 / 2}}{h^{3}} \cdot \frac{2}{3} \cdot\left(E-E_{c}\right)^{3 / 2}\right|_{E_{c}} ^{E_{c}+k T} \\ &=\frac{4 \pi\left[2(1.08)\left(9.11 \times 10^{-31}\right)\right]^{3 / 2}}{\left(6.625 \times 10^{-34}\right)^{3}} \cdot \frac{2}{3} \cdot\left[(0.0259)\left(1.6 \times 10^{-19}\right)\right]^{3 / 2} \\ &=2.12 \times 10^{25} \mathrm{~m}^{-3} \end{aligned}

or

N=2.12 \times 10^{19} \mathrm{~cm}^{-3}

Comment

The result of this example shows the order of magnitude of the density of quantum states in a semiconductor.

Related Answered Questions