Question 3.2: Determine the width (in eV) of a forbidden energy band. Dete...

Determine the width (in \mathrm{eV} ) of a forbidden energy band.

Determine the width of the forbidden bandgap that exists at k a=\pi (see Figure 3.9). Assume that the coefficient P^{\prime}=8 and the potential width is a=4.5 \mathring{A} .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Combining Equations (3.29) and (3.30), we have

\begin{array}{c} f(\alpha a)=P^{\prime} \frac{\sin \alpha a}{\alpha a}+\cos \alpha a \\ \end{array}     (3.29)

\begin{array}{c}f(\alpha a)=\cos k a \\ \end{array}     (3.30)

\begin{array}{c}\cos k a=P^{\prime} \frac{\sin \alpha a}{\alpha a}+\cos \alpha a \end{array}

At k a=\pi and using P^{\prime}=8, we have

-1=8 \frac{\sin \alpha a}{\alpha a}+\cos \alpha a

We need to find the smallest values of \alpha a that satisfy this equation and then relate \alpha to the energy E to find the bandgap energy. From Figure 3.8, we see that, at one value of k a=\pi, we have \alpha a=\pi \equiv \alpha_{1} a. Then

\alpha_{1} a=\sqrt{\frac{2 m E_{1}}{\hbar^{2}}} \cdot a=\pi

or

E_{1}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}=\frac{\pi^{2}\left(1.054 \times 10^{-34}\right)^{2}}{2\left(9.11 \times 10^{-31}\right)\left(4.5 \times 10^{-10}\right)^{2}}=2.972 \times 10^{-19} \mathrm{~J}

From Figure 3.8, we see that, at the other value of k a=\pi, \alpha a is in the range \pi<\alpha a<2 \pi. By trial and error, we find \alpha a=5.141 \equiv \alpha_{2} a. Then

\alpha_{2} a=\sqrt{\frac{2 m E_{2}}{\hbar^{2}}} \cdot a=5.141

or

E_{2}=\frac{(5.141)^{2} \hbar^{2}}{2 m a^{2}}=\frac{(5.141)^{2}\left(1.054 \times 10^{-34}\right)^{2}}{2\left(9.11 \times 10^{-31}\right)\left(4.5 \times 10^{-10}\right)^{2}}=7.958 \times 10^{-19} \mathrm{~J}

The bandgap energy is then

E_{g}=E_{2}-E_{1}=7.958 \times 10^{-19}-2.972 \times 10^{-19}=4.986 \times 10^{-19} \mathrm{~J}

or

E_{g}=\frac{4.986 \times 10^{-19}}{1.6 \times 10^{-19}}=3.12 \mathrm{eV}

Comment

The results of this example give an order of magnitude of forbidden energy band widths.

3-2+

Related Answered Questions