Products Rewards
from HOLOOLY

We are determined to provide the latest solutions related to all subjects FREE of charge!

Enjoy Limited offers, deals & Discounts by signing up to Holooly Rewards Program

HOLOOLY

HOLOOLY
TABLES

All the data tables that you may search for.

HOLOOLY
ARABIA

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

HOLOOLY
TEXTBOOKS

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

HOLOOLY
HELP DESK

Need Help? We got you covered.

## Q. 10.5

Estimate the size of the induced diamagnetic moment in a typical atom, assuming an orbital radius equal to the Bohr radius and an applied field of 2.0 T. Compare the result with the Bohr magneton $\mu_{ B }=e \hbar / 2 m=9.27 \times 10^{-24}$ J/T, a typical magnetic moment.

Strategy With the numerical values of the orbital radius and magnetic field known, the induced magnetic moment is given by Equation (10.38). Using SI units throughout, the units for change in magnetic moment will be in J/T.

$\Delta \mu=\frac{e^{2} r^{2} B}{4 m}$ (10.38)

## Verified Solution

Using the numerical values provided along with the electron charge and mass,

\begin{aligned}\Delta \mu=\frac{e^{2} r^{2} B}{4 m} &=\frac{\left(1.60 \times 10^{-19} C \right)^{2}\left(5.29 \times 10^{-11} m \right)^{2}(2.0 T )}{4\left(9.11 \times 10^{-31} kg \right)} \\&=3.9 \times 10^{-29} J / T\end{aligned}

The change in the magnetic moment is only about $4 \times 10^{-6}$ as large as the Bohr magneton. This illustrates that diamagnetism is generally a weak effect.